BLE-Forschungsvorhaben 2810HS032, Aktenzeichen: 514-06.01-2810HS032

Antibiotika in Schweinegülle:

Entwicklung von Strategien für Güllebehandlungsverfahren zur gleichzeitigen Verminderung der Güllebelastung mit Antibiotika und Antibiotika-Resistenz-

genen

- AiSG-Projekt: Abschlussbericht -

Technische Universität Braunschweig Institut für Ökologische und Nachhaltige Chemie

Projektleitung: apl. Prof. Dr. Robert Kreuzig, Prof. Dr. Uwe Schröder

Projektbearbeitung: Susen Hartung, Arum Widyasari, Birgit Wolters

Projektlaufzeit: 1. November 2011 bis 31. Juli 2014

Zusammenarbeit mit der:

Landwirtschaftskammer Niedersachsen, Oldenburg und Braunschweig, vertreten durch Tim Eiler, Dr. Günter Steffens, Dr. Andreas Freytag, Dr. Karsten Lacü.

BMELV-Ressortforschung, vertreten durch apl. Prof. Dr. h.c. Kornelia Smalla, Julius Kühn-Institut, Institut für Epidemiologie und Pathogendiagnostik, Braunschweig.

Inhaltsverzeichnis

1.	Ausgangssituation und Zielsetzung des Forschungsvorhabens	1
1.1	Wissenschaftlicher und technischer Stand	
1.2	Planung und Ablauf des Vorhabens	2
2.	Material und Methoden	4
2.1	Auswahl der landwirtschaftlichen Betriebe	
2.2	Probenahmeaktivitäten	
2.3	Rückstandsanalytische Untersuchung von Proben aus Praxisbetrieben	6
2.4	Bioanalytische Untersuchung von Proben aus Praxisbetrieben	7
2.5	Laborexperimente zur Behandlung von Schweinegülle und Gärresten	8
2.5.1	Simulationstests zur Güllelagerung	
2.5.2	Simulationstests zur Gülleseparation	9
2.5.3	Simulationstests zur anaeroben Stoffumwandlung	10
2.5.4	Simulationstests zur Gärrestlagerung	11
2.5.5	Simulationstests zur Nachbehandlung von Gärresten	
2.5.6	(Bio)elektrochemische Tests zur Antibiotika-Elimination	12
3.	Ergebnisse und Diskussion	13
3.1	Betriebsinformationen und Antibiotika-Anwendungsmuster	
3.2	Qualität verschiedener Probenahmetechniken	17
3.3	Screening-Studie zu Antibiotika-Rückständen	18
3.3.1	Betriebe mit Güllelagerung und Gülleausbringung	19
3.3.2	Betriebe mit Biogasanlagen	
3.4	Betriebsspezifische Antibiotika-Anwendungen und Rückstandssituationen	22
3.4.1	Betriebe mit Güllelagerung und Gülleausbringung	
3.4.2	Betriebe mit Biogasanlagen	24
3.5	Screening-Studie zu Antibiotika-Resistenzgenen	28
3.5.1	Bioanalytische Untersuchungen von Schweinegüllen und Proben aus Biogas- anlagen	
3.5.2	Einfluss der Prozessierung von Schweinegüllen in Biogasanlagen	29
3.5.3	Zusammensetzung der bakteriellen Gemeinschaften in unterschiedlichen Pro-	30
5.5.5	zessierungsstufen der Biogasanlagen	30
3.5.4	Exogene Plasmidisolierung	31
3.6	Laborexperimente	33
3.6.1	Einfluss der Güllelagerung auf Antibiotika und Resistenzgene	
3.6.2	Einfluss der Gülleseparation auf Antibiotika	36

3.6.3	Einfluss der anaeroben Stoffumwandlung auf Antibiotika und Resistenzgene	38
3.6.4	Einfluss der Gärrestlagerung auf Antibiotika	42
3.6.5	Einfluss der Nachbehandlung von Gärresten auf Antibiotika	43
3.6.6	Einfluss (bio)elektrochemischer Verfahren auf Antibiotika	47
4.	Voraussichtlicher Nutzen und Verwertbarkeit der Ergebnisse	49
5.	Zusammenfassung	50
6.	Gegenüberstellung der ursprünglich geplanten zu den tatsächlich erreichten Zielen	51
7.	Literaturverzeichnis	53
8.	Anhang	60
8.1	Rückstandsanalytische Untersuchungen in Praxisbetrieben (A)	
8.2	Bioanalytische Untersuchungen in Praxisbetrieben und Labortests (B)	108

1. Ausgangssituation und Zielsetzung des Forschungsvorhabens

1.1 Wissenschaftlicher und technischer Stand

Die europäischen Zentren der konventionellen Schweinemast und Schweinezucht befinden sich in Belgien, Dänemark, Deutschland, Frankreich, Italien, Spanien und den Niederlanden (Bernet und Béline, 2009; Melse und Timmerman, 2009). In Deutschland liegt dieses Zentrum in Niedersachsen, wo 9 Mio. Schweine (4 Mio. Mastschweine, 1 Mio. Zuchtschweine, 2 Mio. Ferkel und 2. Mio. Jungschweine bis 50 kg Körpergewicht) von 28 Mio. Schweinen in Deutschland gehalten werden (Statistisches Bundesamt, 2013). Die konventionelle Schweinehaltung ist dabei unweigerlich mit der regelmäßigen Verabreichung von Antibiotika verbunden, um Tiererkrankungen vorzubeugen oder zu behandeln (Venglovsky et al., 2009; Gans et al., 2010). Das Bundesinstitut für Verbraucherschutz und Lebensmittelsicherheit (2014) beziffert dementsprechend die von Tierärzten an Landwirte abgegebenen Antibiotika in Deutschland in 2012 auf insgesamt 1619 t.

Nach der Verabreichung werden die Antibiotika von den behandelten Schweinen teilweise als unveränderte Ausgangsverbindungen und/oder als gebildete Metaboliten ausgeschieden (Lamshöft et al., 2007). Für die häufig eingesetzten Tetracyclin-Antibiotika werden so Ausscheidungsraten bis zu 90 % angegeben (Kumar et al., 2005). Zusammen mit den Exkrementen gelangen Antibiotika-Rückstände in die Gülle. Dort wurden Rückstandskonzentrationen von z.B. Chlortetracyclin und Oxytetracyclin bis über 700 mg/kg Gülle (Trockenmasse; TM) gefunden (Pan et al., 2011; Gans et al., 2010). Die Rückstandssituation mit Antibiotika in Schweinegüllen wird gleichzeitig durch teilweise in sehr hohen Abundanzen auftretende Antibiotika-Resistenzgene (ARGs) und mobile genetische Elemente (MGEs) signifikant verschärft (Binh et al., 2008; Joy et al., 2014). Mit der Ausbringung kontaminierter Schweinegüllen werden Antibiotika-Rückstände, sofern nicht während der Güllelagerung abgebaut, und Antibiotika-Resistenzgene in landwirtschaftlich genutzte Böden eingetragen (Kreuzig und Höltge, 2005; Martínez-Carballo et al., 2007; Heuer et al., 2008; Lamshöft et al., 2010). Dort können sich Antibiotika persistent verhalten (Winckler et al., 2004; Hamscher et al., 2005). So wurden Konzentrationen im Boden von z.B. Doxycyclin von 14-499 µg/kg TS in der 0-20 cm-Schicht gefunden (Chen et al., 2012; Zhou et al., 2013a; Zhou et al., 2013b). Ferner fördern die Antibiotika-Rückstände die Abundanz von Antibiotika-Resistenzgenen in einem Zeitfenster bis zu 2 Monate nach Gülleausbringung (Heuer et al., 2011). Neben dem Transport von Antibiotika in Böden via Runoff und Leaching (Kreuzig et al., 2005; Sarmah et al., 2006) wurde auch bereits die Aufnahme in Pflanzen nachgewiesen (Grote et al., 2007; Lillenberg et al., 2010; Du und Liu, 2012). So betrugen die Konzentrationen von Doxycyclin, Demeclocyclin, Chlortetracyclin und iso-Chlortetracyclin in Weizen, Gerste und Triticale 30-95 µg/kg Frischmasse (FM) (Freitag et al., 2008). Neben dem Gentransfer im Oberboden kann die Ausbreitung von Antibiotika-Resistenzgenen im Boden ein weiteres Risiko darstellen. Im Einzugsbereich von amerikanischen Schweinehaltungsbetrieben, in denen die Gülle in Lagunen gelagert wurde, konnten Mackie et al. (2006) und Koike et al. (2007) sogar eine Verlagerung von Tetracyclin-resistenten Bakterien bis in den angrenzenden Grundwasserleiter feststellen.

Die konventionelle Haltung von Produktionstieren in den 27 europäischen Mitgliedsstaaten produziert jährlich mehr als 1500 Mio. t Gülle. In der deutschen Schweinehaltung fallen schätzungsweise 49 Mio. t an (Holm-Nielsen et al., 2009). Bezüglich des 33 %-Kontingents der in Niedersachsen gehaltenen Schweine entspricht das 16 Mio. t. Um die Überdüngung durch die Gülleausbringung zu verhindern, ist ein nachhaltiges Güllemanagement unter Einbeziehung von überregionaler Umverteilung und Recycling von Nährstoffüberschüssen erforderlich. Insbesondere in Deutschland wird dieser Ansatz durch die Einbeziehung von Güllen als Co-Substrat von Energiepflanzen in die Biogasanlagen zur Gewinnung erneuerbarer Energien umgesetzt (Weiland, 2010). Als Zugewinn werden die Verbesserung der Düngerqualität der Gärreste sowie die Verminderung von Geruchsund Pathogenemissionen genannt (Holm-Nielsen et al., 2009). Bezüglich der mit Güllen eingetragenen Antibiotika-Rückstände konzentrieren sich aktuelle Forschungsaktivitäten auf die Fragestellungen, inwiefern Antibiotika den Fermentationsprozess inhibieren (Chen et al., 2008; Gans et al., 2008) und inwiefern Antibiotika durch den Fermentationsprozess eliminiert werden können (Gans et al., 2010; Ratsak et al., 2013; Spielmeyer et al., 2014).

1.2 Planung und Ablauf des Vorhabens

In den bisher in der Literatur beschriebenen Untersuchungen konnten Antibiotika-Rückstände in Schweinegüllen und Gärresten bis in Konzentrationen von mg/kg TM nachgewiesen werden. Dabei wurden allerdings diese Ergebnisse in den meisten Fällen losgelöst von den Antibiotika-Anwendungsmustern betrachtet, da diese Daten in der Regel nicht verfügbar sind. Es war deswegen das erste Ziel dieses Forschungsvorhabens, eine Screening-Studie in 8 Schweinemast- und 8 Schweinezuchtbetrieben mit konventionellem Güllemanagement in Niedersachsen von der Antibiotika-Anwendung bis zum Auftreten von Antibiotika-Rückständen sowie Antibiotika-Resistenzgenen (ARGs) und mobilen genetischen Elementen (MGEs) in Schweinegüllen unter Mitwirkung der beteiligten Landwirte zu erstellen. Zweitens wurde in 5 Schweinezuchtbetrieben mit hofeigenen Biogasanlagen untersucht, inwiefern diese Belastung von Schweinegüllen, die hier als Co-Substrate von Energiepflanzen, überwiegend Maissilage, eingesetzt wurden, durch die anaerobe Stoffumwandlung vermindert wird. In 4 Biogasanlagen, die mit unterschiedlichen Gärsubstraten von verschiedenen landwirtschaftlichen Betrieben beliefert wurden, wurde anhand der rückstands- und bioanalytischen Untersuchungen von Fermenter- und Nachgärermaterialien sowie Gärresten die allgemeine Belastung von Input- bzw. Output-Materialien betrachtet. Entsprechend des dritten Zieles dieses Forschungsvorhabens wurden Labortests zur Simulation der Güllelagerung und Gülleseparation, der anaeroben Stoffumwandlung, der Gärrestlagerung und Gärrestnachbehandlung sowie (bio)elektrochemischer Verfahren zur Behandlung wässeriger Gülle- bzw. Gärrestfraktionen untersucht, um einen ersten Überblick über Entwicklungsmöglichkeiten von verfahrenstechnischen Verminderungsstrategien für Antibiotika-Rückstände sowie Antibiotika-Resistenzgene und mobilen genetischen Elementen in Schweinegüllen zu erarbeiten.

2. Material und Methoden

2.1 Auswahl landwirtschaftlicher Betriebe

In Zusammenarbeit mit der Landwirtschaftskammer Niedersachsen in Oldenburg und Braunschweig konnten 8 Schweinemast- und 8 Schweinezuchtbetriebe, die an 2 Beratungsringen (BRA, BRB) beteiligt sind, sowie 9 Biogasanlagen (BGA) in Niedersachsen für ein Mitwirken an diesem Forschungsvorhaben gewonnen werden. Entsprechend der mit den beteiligten Landwirten geschlossenen Vertraulichkeitsvereinbarungen über die Anonymisierung betriebsspezifischer Daten, werden die Standorte der landwirtschaftlichen Betriebe hier deswegen nicht näher bezeichnet. Die beteiligten Betriebe unterscheiden sich in den Haltungssystemen, i.e. Schweinemast und Schweinezucht, – letztere schließt in einigen Betrieben die Schweinemast ein –, in der Anzahl der gehaltenen Schweine, in den Antibiotika-Anwendungsmustern und in den Güllelagerungssystemen (Keller, Silo, Lagune). Die beteiligten Betriebe mit Biogasanlagen setzen zum einen Maissilage und Schweinegülle, zum anderen Rindergülle (teilweise separiert), Miste, Hühnertrockenkot und verschiedene Ganzpflanzensilagen (Zuckerrübe, Grünroggen, Hafer, Sonnenblumen) ein. Neben den Unterschieden in den Schweinehaltungssystemen unterscheiden sich die Biogasanlagen in Konstruktion, Größe und Leistung.

Die Betriebsinformationen zu Betriebsgröße, Schweinehaltungssystem, Güllemanagement und Betrieb der Biogasanlagen wurden durch Befragung der Landwirte ermittelt. Ein Überblick über die Zeitpunkte und Frequenzen der Antibiotika-Anwendungen zur Behandlung von Einzeltieren oder Tiergruppen mittels Injektion, Trinkwasser oder Futtermitteln ergab sich aus der Auswertung von Arzneimittelabgabe- und anwendungsbelegen.

2.2 Probenahmeaktivitäten

Entsprechend den hauptsächlichen Ausbringungszeiten für Wirtschaftsdünger wurden Gülleproben in den beteiligten Schweinemast- und Schweinezuchtbetrieben im Frühjahr und Herbst 2012 und im Frühjahr 2013 genommen. Dabei wurden die Güllekeller mittels einer von Hoeksma et al. (1995) entwickelten Probensonde (2 m lang, 53 mm ID) beprobt (Abb. 1A), die 3-4 Mal in die Vorgrube der Güllekeller eingeführt wurde, um so 8 L-Proben zu sammeln. Diese Proben wurden aufgemischt und dann 300 mL-Aliquote in Polyethylenflaschen überführt. Diese Prozedur wurde für jeden Güllekeller 2-4 Mal wiederholt, um Replikate für rückstands- und bioanalytische Untersuchungen sowie Rückstellproben zu gewinnen. Die Probenflaschen wurden dann in Kühlboxen zum Laboratorium zur Analyse transportiert. Vor der Probenahme wurde die Gülle in den Kellern gründlich aufgerührt. Sofern hierdurch in einzelnen Betrieben allerdings nennenswerte Emissionen in die

Ställe verursacht worden wären, wurden entsprechend der betriebsspezifischen Ausbringungspraxis auf das Aufrühren verzichtet.

Abb. 1. Probensonde (A) für die repräsentative Entnahme von Gülleproben im Tiefenprofil von Güllesilos und Güllekellern (Hoeksma et al., 1995) sowie Bypass-Sammler (B) während der Befüllung des Vakuumtankwagens über einen mobilen Ansaugstutzen.

Zum Zeitpunkt der Gülleausbringung wurden zusätzliche Proben während des Abpumpens der Gülle mittels Vakuumtankwagen entnommen. Hierfür wurde in die Zuleitung zum Tankwagen ein Bypass-Sammler installiert (**Abb. 1B**). Alternativ wurden Gülleproben aus dem Rücklauf vom Tankwagen gewonnen. Diese beiden Probenahmetechniken wurden auch für die Probenahme aus Silos oder Lagunen angewendet. Um die Probenahmequalitäten dieser Techniken zu überprüfen, wurden im Betrieb BRA 1 Gülleproben aus dem Keller und dem Silo mittels Probensonde und Bypass-Sammler entnommen. Außerdem wurde im Betrieb BRA 7 das Auspumpen einer Lagune durch die Probenahme mittels Rücklauf vom Vakuumtankwagen im Tagesverlauf begleitet.

Die Schweinezuchtbetriebe mit hofeigener Biogasanlage wurden ebenfalls von Frühjahr 2012 bis Herbst 2013 beprobt. Für die als "Versuchsbetriebe" ausgewählten Betriebe BGA 3 und 4 wurde die Probenahme bis zum Frühjahr 2014 fortgeführt, um hier detailliertere Informationen über die Belastung von Input- und Output-Materialien in Abhängigkeit von Antibiotika-Anwendungen aufnehmen zu können. Die Biogasanlagen, die von verschiedenen Betrieben mit verschiedenen Input-Materialien versorgt wurden, wurden punktuell im Herbst 2012 oder Frühjahr 2013 in die Untersuchungen einbezogen. Zur Probenahme aus Fermentern, Nachgärern und geschlossenen Endlagern der Biogasanlagen wurden die Materialien aufgerührt und Proben durch die Auslassventile entnommen. Offene Endlagersilos wurden wie Güllesilos mittels Probensonde, Bypass-Sammler

oder Rücklauf vom Tankwagen beprobt. Aliquotierung der Mischproben, Transfer in Probenflaschen und Probentransport entsprachen den Verfahren für Gülleproben.

2.3 Rückstandsanalytische Untersuchung von Proben aus Praxisbetrieben

Anhand dieser Screening-Studie zur Antibiotika-Anwendung wurden 19 Leitsubstanzen ausgewählt, die zu den Wirkstoffklassen der Diaminopyrimidine (Trimethoprim), Sulfonamide (Sulfadiazin, Acetyl-sulfadiazin, Sulfamerazin, Acetyl-sulfadimidin, Sulfadimidin, Sulfamethoxypyridazin, Sulfadoxin, Sulfadimethoxin), Tetracycline (Oxytetracyclin, Tetracyclin, Chlortetracyclin, Doxycyclin), Fluorochinolone (Marbofloxacin, Ciprofloxacin, Danofloxacin, Enrofloxacin), Makrolide (Tylosin) und Pleuromutiline (Tiamulin) gehören. In Anlehnung an die Methoden von Jacobsen und Halling-Sørensen (2006) und Zhou et al. (2012) wurde eine rückstandsanalytische Methode adaptiert, mit der die Leitsubstanzen nach Probenvorbehandlung, Extraktion und Extraktreinigung mittels Flüssigchromatographie/Tandem-Massenspektrometrie (LC/MS/MS) bestimmt wurden.

Im ersten Schritt der Probenvorbehandlung wurden für alle Proben die pH-Werte und die Trockensubstanzgehalte ermittelt. Die Proben wurden dann nach Zugabe von Ethylendiamintetraacetat und Citratpuffer sowie Einstellung auf pH 3.0 gefriergetrocknet. Die erhaltenen Feststoffproben wurden mit einem Gemisch von Methanol/Ethylacetat (1/1) einer Flüssig/Fest-Extraktion über Nacht unterzogen. Die gewonnenen Extrakte wurden schließlich auf Endvolumina von 2-5 mL eingeengt.

Die erhaltenen Rohextrakte wurden zur Abtrennung hydrophober co-extrahierter Substanzen im ersten Reinigungsschritt mittels Flüssig/Flüssig-Extraktion mit n-Hexan behandelt. Die die Leitsubstanzen beinhaltenden wässerigen Phasen wurden im zweiten Reinigungsschritt mittels Festphasenextraktion unter Verwendung von HLB-Kartuschen weitergehend aufgereinigt. Die adsorptiv angereicherten Leitsubstanzen wurden schließlich sequentiell eluiert. Verwendete Elutionsmittel waren Methanol mit 0.1 % Ameisensäure, Acetonitril mit 0.1 % Ameisensäure, Isopropanol und Ethylacetat. Die Eluate wurden in ein Acetonitril/Wasser-Gemisch (1/1) mit 0.1 % Ameisensäure umgelöst, filtriert und bis zur Analyse bei -20 °C gelagert.

Identifikation und Quantifikation der Leitsubstanzen erfolgten mittels Flüssigchromatographie/Tandem-Massenspektrometrie (LC/MS/MS). Die Flüssigchromatographie zur Stofftrennung wurde unter Verwendung einer reversed-phase Zorbax Eclipse Plus C₁₈-Säule und der Lösungsmittel A: Wasser/Acetonitril (9/1) mit 0.01 % Ameisensäure und B: Methanol/Acetonitril (1/1) mit 0.01 % Ameisensäure mit folgendem Gradientensystem (Zeit/% B) betrieben: 0/0, 20/90, 22/100, 25/100, 28/0 und 30/0. Für die Detektion der Leitsubstanzen wurde ein Tandem-Massenspektrometer eingesetzt, das mit Electrospray Ionization (ESI+) im Multiple Reaction Monitoring Mode (MRM) be-

trieben wurde. Die Konzentrationen der Leitsubstanzen wurden durch Single-Point Standard Addition ermittelt, um für Electrospray Ionization typische Matrixeffekte zu kompensieren.

2.4 Bioanalytische Untersuchung von Proben aus Praxisbetrieben

Für die bioanalytischen Untersuchungen wurden die Proben im Frühjahr und Herbst 2012 jeweils als 4 Replikate entnommen und analysiert. Mittels harscher Lyse wurde aus den Proben die Gesamt-DNA (TC-DNA) isoliert und es wurden mit Hilfe von etablierten PCR-Systemen Sequenzen, die spezifisch für ARGs oder MGEs sind, aus der DNA amplifiziert. Zur Erhöhung der Spezifität und der Sensitivität wurden diese Amplifikate anschließend mit Digoxigenin-markierten DNA-Sonden hybridisiert (Southern Blot Hybridisierung), welche spezifisch für die jeweiligen Sequenzen sind. Auf diese Weise wurden die Proben auf das Vorliegen von Genen untersucht, die Resistenzen gegen Sulfonamide (*sul1*, *sul2*, *sul3*), Tetracycline (*tetA*, *tetM*, *tetX*) und quaternäre Ammoniumverbindungen (*qacE*, *qacE*Δ1), wie sie oft in Desinfektionsmitteln zu finden sind, vermitteln, sowie auf Plasmide unterschiedlicher Inkompatibilitätsgruppen (IncN, IncP-1, IncW, IncQ, IncU und LowGC) und Integrons der Klasse 1 (*intl1*) und 2 (*intl2*) getestet (für Referenzen verwendeter Primersysteme s. Tab. B27 und B28 ¹).

Um Rückschlüsse auf den Einfluss der mesophilen Fermentation in BGAs auf die Abundanzen von ARGs (*sul1*, *sul2*, *tetM*, *tetW*, *tetQ*), MGEs (Plasmide: IncP-1, IncP1-ε, LowGC und Integronassoziierten Genen: *qacE*Δ1, *intl1*, *intl2*) zu ziehen, wurden diese Gene in der TC-DNA aus unterschiedlichen Prozessierungsstufen der BGAs mit Hilfe der quantitativen real-time PCR quantifiziert und verglichen (Referenzen verwendeter real-time PCR-Systeme s. Tab. B29).

Da weder ARGs noch MGEs unabhängig von ihren jeweiligen Wirten zu betrachten sind, wurden zusätzlich die Zusammensetzungen der bakteriellen Gemeinschaften der unterschiedlichen Stufen von BGAs mittels Denaturierender Gradienten Gelelektrophorese (DGGE) analysiert. Hierbei wird durch Amplifikation von 16S rRNA-Genfragmenten aus der TC-DNA und anschließender Färbung ein charakteristischer Fingerabdruck der jeweiligen bakteriellen Gemeinschaft der Probe erhalten, deren Gele nach Auftrennung in der DGGE mit anderen Proben verglichen werden kann. Diese Methodik erlaubt Aussagen über die Ähnlichkeit einzelner Proben untereinander, gestattet aber keine taxonomische Zuordnung der Bakterien. Aus diesem Grund wurden zusätzlich je 3 Wiederholungen der Gärrestproben aus allen 8 BGAs sowie der Gülle- und Fermenterproben der BGA 3 mit Hilfe der 454-Pyrosequenzierung analysiert, wodurch eine Zuordnung der dominanten Bakterien in den Proben ermöglicht wurde.

7

Weitere Tab. und Abb. sind im Anhang zusammengestellt: A: Rückstandsanalytische Untersuchungen in Praxisbetrieben und B: Bioanalytische Untersuchungen in Praxisbetrieben und Labortests.

Um zu klären, ob Gärreste eine Quelle übertragbarer Antibiotika-Resistenzen darstellen, wurde in Ergänzung zu den DNA-basierten Methoden, die zwar einen Überblick über das Vorkommen von ARGs und MGEs erlauben, jedoch keine unmittelbaren Rückschlüsse über deren Funktionalität oder Transferabilität zulassen, die exogene Plasmidisolierung durchgeführt. Mit dieser Methode können transferierbare Plasmide aus ausschließlich vitalen Bakterien der Proben in leicht kultivierbare Rezipienten-Stämme gefischt werden und so unabhängig von der Kultivierbarkeit des ursprünglichen Wirtes untersucht werden. Da nur ein geringer Anteil aller Umweltbakterien (geschätzt 1%) mit den zur Zeit zur Verfügung stehenden Methoden kultivierbar ist, wird durch die Übertragung in einen leicht kultivierbaren Wirt auch die Analyse von Plasmiden aus nichtkultivierbaren Bakterien ermöglicht.

2.5 Laborexperimente zur Behandlung von Schweinegülle und Gärresten

Da Antibiotika-Rückstände und Antibiotika-Resistenzgene eine Belastung von Schweinegülle und Gärresten darstellen können, wurden auf Grundlage der Screening-Studie in den Praxisbetrieben Laborexperimente durchgeführt, um Behandlungsverfahren für Schweinegülle und Gärreste bezüglich ihres Eliminationspotenzials für Antibiotika und Resistenzgene zu überprüfen. So wurden die Sulfonamid-, Fluorchinolon- und Tetracyclin-Antibiotika Sulfadiazin, Enrofloxacin bzw. Doxycyclin als Leitsubstanzen untersucht. Die beiden erstgenannten wurden als die ¹⁴C-markierten Radiotracer Sulfadiazin[phenylring-U-14C] und Enrofloxacin-[chinolon-2-14C] eingesetzt, was in den einzelnen Experimenten das Aufstellen einer detaillierten Massenbilanz unter Berücksichtigung von Mineralisation sowie extrahierbaren und nicht-extrahierbaren Rückständen ermöglichte. In Ermangelung eines verfügbaren Radiotracers wurden die Experimente mit Doxycyclin rückstandsanalytisch begleitet. Die Experimente konzentrierten sich zum einen auf konventionelle, aus der Praxis bekannte Behandlungsverfahren. Hierzu zählen die Güllelagerung, die anaerobe Stoffumwandlung ohne/mit Gülleseparation sowie die Gärrestlagerung ohne/mit Nachbehandlung. Zu den alternativen, heute bereits für die Abwasserreinigung im Fokus der Forschung stehenden Verfahren gehörten der Einsatz von Bor-dotierter Diamantelektrode (Martinez-Huitle und Ferro, 2006) und Biobrennstoffzelle (Sievers et al., 2010).

2.5.1 Simulationstests zur Güllelagerung

In Schweinemast- und Schweinezuchtbetrieben mit konventionellem Güllemanagement wird die anfallende Schweinegülle bis zu ca. 180 Tagen in Kellern, Silos oder Lagunen unter überwiegend anaeroben Milieubedingungen bis zur Ausbringung gelagert. Zur Durchführung dieser Simulations-

tests zur Güllelagerung wurden Laborbatchtestsysteme eingesetzt, die im Dunkeln bei 20 ± 1 °C bis zu 180 Tagen inkubiert wurden (Kreuzig et al., 2003; Kreuzig, 2010). Bis zum Ende jedes Inkubationsintervalls wurde für die Radiotracerexperimente durch Analyse der Kaliumhydroxidlösung aus der 14C-Kohlendioxid-Falle die Mineralisation bestimmt. Die Gülleproben wurden danach für ¹⁴C-Sulfadiazin einer Acetonitril-Extraktion mit einer sich anschließenden Ethylacetat-Verteilung unterzogen, um die extrahierbaren Anteile quantifizieren zu können. Für die entsprechende Extraktion von ¹⁴C-Enrofloxacin wurde den Proben vorab zusätzlich Citrat-Puffer (pH 2.5) zugegeben. Die Extrakte wurden zusätzlich mittels Radio-Dünnschichtchromatographie auf die eingangs applizierten Ausgangsverbindungen und gebildete Metaboliten untersucht. Dabei kamen für Sulfadiazin die Normalphasen-Chromatographie (Silicagel-Platte; Ethylacetat als Laufmittel) und für Enrofloxacin die Umkehrphasen-Chromatographie (RP₁₈-Platte; Acetonitril/Citrat-Puffer (3:1)) zum Einsatz. Schließlich wurden die bereits extrahierten Proben getrocknet und Aliquote der erhaltenen Feststoffe einer Totaloxidation in einem Verbrennungsautomaten zugeführt, um die nicht extrahierte Radioaktivität in ¹⁴C-Kohlendioxid umzuwandeln, was schließlich als Maß für die nicht-extrahierbaren Rückstände quantifiziert wurde (Kreuzig et al., 2010a). Für ausgewählte Proben schloss sich eine sequentielle Extraktion mittels salzsaurem Methanol sowie N-Dimethylformamid und Chlortrimethylsilan zur Silylierung organischer Matrixbestandteile an (Klaus et al., 1998), um zu überprüfen, inwiefern unter harscheren Extraktionsbedingungen noch eingangs applizierte Ausgangsverbindungen und gebildete Metaboliten aus den nicht-extrahierbaren Fraktionen freigesetzt werden können (Heise et al., 2006).

2.5.2 Simulationstests zur Gülleseparation

Die Gülleseparation stellt eines der ersten in Praxisbetrieben angewendeten Güllebehandlungsverfahren dar, um zum einen die Transportkosten durch die Reduktion der vom landwirtschaftlichen Betrieb zur Biogasanlage zu transportierenden Volumina zu vermindern. Zum anderen lässt sich mit dem Einsatz von Gülle-Feststoffen der Energiegehalt dieses Co-Substrates und damit die Produktion von Bio-Methan deutlich steigern (Asam et al., 2011). Die oftmals durch Zentrifugation erreichte Separation der Güllesuspension wurde deswegen im Labor nachgestellt, um die Verteilung von 19 Leitsubstanzen bei diesem Prozess zu untersuchen. Die rückstandsanalytischen Untersuchungen der flüssigen und festen Phasen erfolgte wie bereits in Kapitel 2.3 beschrieben.

2.5.3 Simulationstests zur anaeroben Stoffumwandlung

Da eine Bilanzierung des Verbleibs mit Schweinegülle in Biogasanlagen eingetragener Antibiotika-Rückstände in Praxisbetrieben infolge der (semi)kontinuierlichen Prozessabläufe mit Verweilzeiten im Fermenter von 60-100 Tagen nicht vorgenommen werden kann, wurden Labortests zur anaeroben Stoffumwandlung in einem Batch-Fermentersystem gemäß DIN 38414-8 (1985) durchgeführt. In Simulation der Prozesse in Biogasanlagen der untersuchten Praxisbetriebe wurden aktives Fermentermaterial als Inokulum (85-100 g) sowie Mais (5 g) und Schweinegülle (45-60 g) als Co-Substrate eingesetzt. Um den Einfluss unterschiedlicher Gärsubstrate auf die Elimination dieser Leitsubstanzen zu untersuchen, wurde in einer weiteren Testserie die Maissilage durch das leicht vergärbare Glycerin substituiert. Für die optimierte Prozessführung wurde dieses Mischungsverhältnis gemäß VDI 4630 (2008) auf ein Verhältnis der organischen Trockenmassen (oTM) von Substrat zu Inokulum auf oTM_{Substrat} / oTM_{Inokulum} < 0.5 eingestellt. Zur weiteren Überprüfung der Prozessführung wurden in der 35-tägigen Inkubationszeit im mesophilen (40 °C) und thermophilen Betrieb (55 °C und 70 °C) die Gasausbeuten und Methangehalte ermittelt und am Versuchsende zusätzlich die Milieubedingungen durch Messungen von pH-Werten und Redoxpotentialen charakterisiert. Zu Beginn verschiedener Versuchsserien wurden die Leitsubstanzen Sulfadiazin und Enrofloxacin als 14C-markierte Radiotracer in Konzentrationen von 1 und 10 mg/kg TM dotiert, um auch den Einfluss von Konzentrationsunterschieden auf den Fermentationsprozess erfassen zu können. Mit Versuchsende wurden die Materialien der Fermentergefäße aliquotiert und für beide Testsubstanzen, wie in Kapitel 2.5.1 beschrieben, analysiert. Für ausgewählte Proben schloss sich auch wiederum eine chemische Charakterisierung der nicht-extrahierbaren Rückstände an. Neben der Betrachtung der Antibiotika-Elimination wurden in diesen Testserien auch der Einfluss unterschiedlicher Betriebstemperaturen sowie der Dotierungen von Sulfadiazin und Enrofloxacin auf die Abundanzen von Antibiotika-Resistenzgenen und Integrons mittels guantitativer real-time PCR sowie auf die Zusammensetzung der bakteriellen Gemeinschaft mittels DGGE untersucht. Weitere Untersuchungen zum Rückstandsverhalten im Fermentationsprozess konzentrierten sich auf Doxycyclin, das insbesondere in den Schweinezuchtbetrieben mit eigenen Biogasanlagen zu den am häufigsten angewendeten Antibiotika zählte. Deswegen waren diese Laborexperimente, die in Analogie zu den Radiotracerexperimenten durchgeführt, aber wie bereits unter Kapitel 2.3 beschrieben rückstandsanalytisch begleitet wurden, in Ergänzung zu der Screening-Studie in den Praxisbetrieben von besonderer Bedeutung. Denn bisher liegen nur wenige Kenntnisse über das Verhalten von Doxycyclin während der Lagerung in Schweinegülle vor (Fernández et al., 2004; Szatmári et al., 2011). In diesen Testserien wurden neben Maissilage und Schweinegülle auch Feststoffe nach Gülleseparation eingebracht, um erste Erkenntnisse zum Einfluss dieses Güllebehandlungsverfahrens auf die Antibiotika-Elimination im Fermentationsprozess zu gewinnen.

2.5.4 Simulationstests zur Gärrestlagerung

Neben der Gülle werden auch Gärreste bis zur Ausbringung auf landwirtschaftliche Nutzflächen bis zu 180 Tage gelagert. Deswegen wurden auch Simulationstests zur Gärrestlagerung mit den Leitsubstanzen Sulfadiazin, Enrofloxacin und Doxycyclin durchgeführt. Hierzu wurden Gärreste von einer Biogasanlage eingesetzt, mit den Leitsubstanzen dotiert und schließlich radiotracer- bzw. rückstandsanalytisch analysiert, wie in Kapitel 2.5.1 bzw. 2.3 beschrieben wurde.

2.5.5 Simulationstests zur Nachbehandlung von Gärresten

Da eine vollständige Eliminierung von Antibiotika weder durch die Fermentation in Biogasanlagen (Ratsak et al., 2013; Spielmeyer, 2014) noch durch die Lagerung von Gärresten (Gans et al., 2010) erwartet werden kann, wurden im Rahmen der durchgeführten Laborexperimente auch 2 Ansätze zur Nachbehandlung von Gärresten verfolgt. Im ersten Ansatz wurde die aerobe Behandlung von Gärresten simuliert. Unter Verwendung eines Durchflusssystems mit nachgeschalteten Fallen für flüchtige Metaboliten und ¹⁴C-Kohlenstoffdioxid wurde mit ¹⁴C-Enrofloxacin dotierte Schweinegülle 10 Tage lang mit synthetischer Luft (1 L/h) durchströmt. Danach wurden die nachbehandelten Gärreste sowie die Lösungen aus den Fallen radiotraceranalytisch untersucht, wie in Kapitel 2.5.1 beschrieben wurde.

Im zweiten Ansatz wurde die Gärresttrocknung simuliert, die in Praxisbetrieben für flüssige und separierte Gärreste mit dem Ziel eingesetzt wird, volumenreduzierte Wirtschaftsdünger für einen kostengünstigeren Transport und neue Absatz- und Verwendungsmöglichkeiten zu produzieren. Hierzu werden Bandtrockner mit der Restwärme der Biogasanlagen betrieben. In den Laborexperimenten wurde so überprüft, inwiefern ¹⁴C-Sulfadiazin- bzw. ¹⁴C-Enrofloxacin-Rückstände aus Gärresten durch eine thermische Nachbehandlung eliminiert werden können. Hierzu wurde wiederum das Durchflusssystem, aber ohne Luftbefeuchter eingesetzt. Das in einem Ofen bei 70 °C bzw. 100 °C positionierte Probengefäß wurde mit Luft (1 L/h) für 15 h bzw. 7 h bis zur Trockne der Gärreste durchströmt. Danach wurden die Gärreste für den Sulfadiazin- und Enrofloxacin-Ansatz mit demineralisiertem Wasser bzw. Citrat-Puffer über Nacht benetzt, extrahiert und schließlich radiotraceranalytisch untersucht, wie in Kapitel 2.5.1 beschrieben wurde.

Entsprechende Experimente zur Gärresttrocknung wurden auch mit Doxycyclin durchgeführt, die wiederum rückstandsanalytsich begleitet wurden. Um hier die durch Alterungsprozesse bedingte abnehmende Extrahierbarkeit von Doxycyclin-Rückständen ermitteln zu können, schloss sich für die bereits mittels der unter Kapitel 2.3 beschriebenen Extraktion behandelten Proben noch eine 2. Extraktion mit salzsaurem Methanol an. Die Extrakte aus beiden Extraktionen wurden dann ge-

trennt mittels Frestphasenextraktion aufgearbeitet und mittels Flüssigchromatographie/Tandem-Massenspektrometrie analysiert.

2.5.6 (Bio)elektrochemische Tests zur Antibiotika-Elimination

Forschungsaktivitäten zur Elimination von Mikroschadstoffen aus kommunalen Abwässern konzentrieren sich verstärkt auf elektrochemische Oxidationsverfahren (Martínez-Huitle und Ferro, 2006; Guinea et al., 2010). Unter Verwendung einer Bor-dotierten Diamantelektrode (BDDE) werden so in situ Hydroxyl-Radikale erzeugt, die als ein sehr starkes Oxidationsmittel (Standardreduktionspotential E°(+OH/H₂O) = 2.80 V gegen Standardwasserstoffelektrode) organische Substanzen bis zu Kohlenstoffdioxid oxidieren können. Deswegen wurde ein Durchflusssystem konstruiert, das im Reaktionsgefäß die BDDE als Anode und eine Platin-Kathode, die von einem Elektrolyseur mit einer Spannung von 4 V und einer Stromstärke von 200 mA versorgt wurde, aufnahm und mit einer Stickstoffversorgung und 2 mit Kaliumhydroxid befüllten Kohlenstoffdioxid-Fallen ausgestattet war. In ersten Versuchsserien wurde in Simulation eines artifiziellen Abwassers eine Phosphatpuffer-Lösung verwendet, die entsprechend Schweinegülle auf pH 7.5 und einer Leitfähigkeit von 9 mS/cm eingestellt wurde. Ferner wurde die Flüssigphase einer separierten Schweinegülleprobe eingesetzt. In beiden Ansätzen wurde die oxidative Abbaubarkeit von ¹⁴C-Sulfadiazin und ¹⁴C-Enrofloxacin untersucht.

Alternativ wurde die Biobrennstoffzelle, die als eine Zukunftstechnologie in der energieerzeugenden und ressourcenschonenden Abwassereinigung angesehen wird (Sievers et al., 2010), eingesetzt, um die Mikroschadstoffelimination aus artifiziellem und realem Abwasser im Labormaßstab zu testen. Hierzu wurden potentiostatisch kontrollierte Halbzellen mit 3-Elektroden-Anordnung, i.e. Biofilm-Graphit-Anode, Graphit-Kathode und Ag/AgCl-Referenzelektrode, verwendet. Als Leitsubstanzen wurden ausgewählte Sulfonamide und korrespondierende Acetyl-Metaboliten sowie Enrofloxacin in verschiedenen Testserien appliziert, die rückstandsanalytisch begleitet wurden.

3. Ergebnisse und Diskussion

3.1 Betriebsinformationen und Antibiotika-Anwendungsmuster

An dieser Screening-Studie beteiligten sich 21 Schweinmast- und Schweinezuchtbetriebe in Niedersachsen. So wurden im Beratungsring A 8 Mastbetriebe (BRA 1-8) mit 300-1545 Mastschweinen und im Beratungsring B 8 Zuchtbetriebe (BRB 1-8) mit 100-840 Sauen, 400-1500 Aufzuchtplätzen und 650-1200 Mastschweinen untersucht, in denen die Gülle in Kellern unterhalb der Ställe, in Silos oder Lagunen gelagert und dann im Frühjahr und Herbst auf landwirtschaftliche Nutzflächen ausgebracht werden. Die Betriebsinformationen sind in **Tab. 1** zusammengestellt. Weitere 5 Schweinezuchtbetriebe sind mit hofeigenen Biogasanlagen (BGA 1-5) (elektrische Leistung: 250-716 kW) ausgestattet, in denen die Schweinegülle als Co-Substrat zusammen mit Maissilage zur Biogasproduktion fermentiert wird (**Tab. 2**).

Tab. 1. Betriebsinformationen der Schweinemast- und Schweinezuchtbetriebe mit konventioneller Güllelagerung und Gülleausbringung in Niedersachsen.

B. d. i. d.	Güllemanagement					
Betriebssystem	Input-Materialien	Güllelagerung				
8 Schweinemastbetriebe (BRA 1-8): • 300-1545 Schweine	 Betriebsgülle Fremdgülle Mischung mit Rindergülle Mischung mit Hühnertrockenkot 	 Keller: 300-1000 m³ Silo: 600 m³ Lagune: 1000-1250 m³ 				
8 Schweinezuchtbetriebe: (BRB 1-8): • 100-840 Sauen • 2700-24500 Ferkel/Jahr • 650-1200 Mastschweine	Betriebsgülle Fremdgülle Mischung mit Rindergülle	• Keller: 800-3000 m ³ • Silos: 300-2500 m ³				

In diesen Betrieben mit unterschiedlichen Schweinehaltungssystemen wurden insgesamt 34 verschiedene Antibiotika aus 11 verschiedenen Wirkstoffklassen von Herbst 2011 bis Frühjahr 2013 eingesetzt. Aus der zusammenfassenden Auflistung in **Tab. 3** wird ersichtlich, dass, unabhängig von den Schweinehaltungssystemen, Breitband-Antibiotika, i.e. Benzathin-Benzylpenicillin/Benzylpenicillin-Procain/Dihydrostreptomycin, Benzylpenicillin-Procain, Neomycin/Benzylpenicillin/Benzylpenicillin-Procain und Amoxicillin, häufig angewendet werden, um Einzeltiere, aber auch Gruppen

bis zu 2000 Schweinen zu behandeln. Deutlich niedrigere Applikationsfrequenzen wurden für das Sulfonamid Sulfadimethoxin und die Fluorchinolone Danofloxacin und Marbofloxacin sowie die Makrolide Tildipirosin und Tilmicosin registriert. Die beiden erstgenannten wurden nur in den Schweinezuchtbetrieben mit konventionellem Güllemanagement, die anderen beiden nur in Betrieben mit Biogasanlagen angewendet.

Tab. 2. Betriebsinformationen der Schweinezuchtbetriebe mit hofeigenen Biogasanlagen in Niedersachsen.

Betriebssystem	Güllemanagement	Biogasanlage
5 Schweinezuchtbetriebe mit Biogasanlagen (BGA 1-5): • 265-600 Sauen • 400-3900 Aufzuchtplätze • 550-2100 Mastschweine	Input-Materialien: • Betriebsgülle • Mischung mit Rindergülle • Mischung mit Hühnertrockenkot	 elektrische Leistung: 250-716 kW Gärsubstrate: Schweinegülle (10-18 m³/d) Maissilage (14-16 t/d) Zuckerrübensilage andere Ganzpflanzensilagen Hühnertrockenkot
	Güllelagerung: • Keller: 700-1200 m³ • Silos: 150-1000 m³	 Fermenter: 1300-1860 m³ Verweilzeit: 90-100 d Nachgärer: 1000-2800 m³ Endlager: 1300-6800 m³

In den Schweinemastbetrieben überwog der Einsatz von Antibiotika der 1. Generation, i.e. β-Laktame, Sulfonamide und Tetracycline. In 5 von 8 Betrieben wurde überwiegend Amoxicillin und Tetracyclin, gefolgt von Tylosin, verabreicht. Im Betrieb (BRA 1) mit 1000 Mastschweinen wurden so in diesem Untersuchungszeitraum 140-850 bzw. 104-288 Schweine 18 bzw. 20 Mal mit Amoxicillin und Tetracyclin behandelt. In einem anderen Betrieb (BRA 2) wurde Tetracyclin durch Doxycyclin substituiert, während in einem dritten Betrieb (BRA 7) eine Tetracyclin-Applikation für 385 Schweine durch 8 Chlortetracyclin-Anwendungen (580-820 Schweine) und 1 Doxycyclin-Anwendung (365 Schweine) ergänzt wurde. In einem kleineren Betrieb (BRA 8) mit 380 Mastschweinen konzentrierte sich der Antibiotika-Einsatz auf Amoxicillin (3 Anwendungen/80-340 Schweine), Colistin (1/150), Lincomycin/Spectinomycin (1/300), Tiamulin (1/16) und Tylosin (5/80-340).

Die Antibiotika-Anwendungsmuster in den Schweinezuchtbetrieben mit konventionellem Güllemanagement waren breiter als in den Schweinemastbetrieben. So wurden hier 26 anstatt 16 Einzel- oder Kombipräparate an Einzeltiere oder Gruppen bis zu 1500 Schweinen verabreicht. Neben den Breitband-β-Laktamen wurden hier die augenblicklich verfügbaren Vertreter der Sulfonamide, Tetracycline, Fluorchinolone und Makrolide angewendet. Damit waren die Anwendungsmuster der

8 Betriebe weitgehend übereinstimmend, während sich allerdings die Anwendungsfrequenzen unterschieden. So wurde in einem Betrieb mittlerer Größe (BRB 8; 220 Sauen, 6000 Ferkel/Jahr) die höchste Frequenz für Amoxicillin (21 Anwendungen) und Collistin (14) für die Behandlung von bis zu 500 Schweinen ermittelt.

Tab. 3. Antibiotika-Anwendungen in Schweinemast- und Schweinezuchtbetrieben mit und ohne hofeigenen Biogasanlagen in Niedersachsen von Herbst 2011 bis Frühling 2013.

Wirkstoff- klasse	Antibiotika	Schweinemast- betriebe		Schwe	einezucht- be	Schweinezucht- betriebe mit Bio- gasanlagen		
		Ar	ntibiotika-App	olikation	nen / behande	elte Sch	nweine ^a	
Amino-	Apramycin					1	50	
glycoside	Dihydro-							
	streptomycin ^b	12	5-248	87	10-1500	18	20-2400	
	Gentamicin			8	2- 100	15	60- 400	
	Neomycin ^c					9	200- 700	
Ampheni-	Florfenicol			20	5- 30			
cole								
β-Laktame	Amoxicillin	42	30-850	78	3-1050	103	2-2000	
	Ampicillin			3	5			
	Cloxacillin			3	5			
	Benzylpenicillin ^d	15	5-152	15	2- 100	65	4- 200	
	Cefquinom	8	2- 10	60	2- 400	46	3- 18	
	Ceftiofur			6 250		16	100- 400	
Fluorchino-	Danofloxacin			11	2- 34			
lone	Enrofloxacin	2	30-150	41	3- 270	68	3- 300	
	Marbofloxacin					48	5- 150	

^a: Detaillierte Informationen zu Antibiotika-Anwendungen konnten in 8 Schweinemast- und 7 Schweinezuchtbetrieben mit konventionellem Güllemanagement sowie in 4 Schweinezuchtbetrieben mit hofeiegenen Biogasanlagen gesammelt werden. ^b: angewendet als Benzathin-Benzylpenicillin/Benzylpenicillin-Procain/Dihydrostreptomycin, ^c: angewendet als Neomycin/Benzylpenicillin/Benzylpenicillin-Procain, ^d: angewendet als Benzylpenicillin-Procain.

Tab. 3. Fortsetzung.

Wirkstoff- klasse	Antibiotika	Schweinemast- betriebe		Schwe	einezucht- be	Schweinezucht- betriebe mit Bio- gasanlagen		
		Ar	ntibiotika-App	likatior	en / behande	elte Scl	nweine ^a	
Lincos-	Lincomycin	1	300					
amide	Spectinomycin	1	300					
Makrolide	Erythromycin			1	k.A.	2	80- 150	
	Tildipirosin					10	50- 300	
	Tilmicosin					1	2000	
	Tulathromycin	1	50	52	100-1000	30	100-1200	
	Tylosin	28	10-800	24	1- 200	7	10- 500	
Pleuro-	Tiamulin	1	16	5	35-100			
mutiline								
Polymyxine	Colistin	1	150	51	100-1000	40	72- 892	
Sulfon-	Sulfadiazin	5	135-580	14	36- 500	3	22- 800	
amide	Sulfadimethoxin			4	1-1421			
	Sulfadimidin			53	3- 90	12	6- 8	
	Sulfadoxin			9	2- 4			
	Sulfamerazin					7	10- 17	
	Sulfamethoxy-							
	pyridazin					1	90	
Diamino- pyrimidine	Trimethoprim	5	135-380	80	1-1421	23	6- 800	
Tetracycline	Chlortetracyclin	8	580-820	14	35- 715	4	10- 17	
	Doxycyclin	5	120-365	20	30-1600	87	83-2000	
	Oxytetracyclin			28	1- 60	1	5	
	Tetracyclin	50	100-385	7	380-1400			

k.A.: keine Angabe.

In den Schweinezuchtbetrieben mit hofeigenen Biogasanlagen wurden 24 Antibiotika-Einzel- oder Kombipräparate angewendet. Hier erfolgten regelmäßige Anwendungen von Amoxicillin, Colistin, Doxycyclin, Enrofloxacin und Tulathromycin. In einem Betrieb (BGA 2) mit 475 Sauen und 2000 Aufzuchtplätzen wurden so Dihydrostreptomycin 10 Mal an 1200-2400 Schweine, Collistin 8 Mal an 350-892 Schweine, Doxycyclin 8 Mal an 1000-2000 Schweine und Tulathromycin 12 Mal an 500-1200 Schweine verabreicht. Die höchste Frequenz verabreichter Antibiotika ergab sich für

einen Betrieb (BGA 4) mit 265 Sauen und 2100 Mastschweinen. Hier wurden im Untersuchungszeitraum 55 Mal Amoxicillin an 18-700 Schweine, 75 Mal Doxycyclin an 83-700 Schweine und 41 Mal Enrofloxacin an 3-300 Schweine verabreicht. Damit zählte das Tetracyclin-Antibiotikum Doxycyclin, das in bisher publizierten Studien kaum Erwähnung fand (Gans et al., 2010; Ratsak et al. 2013; Spielmeyer et al. 2014), zu den am meisten angewendeten Wirkstoffen.

Tab. 4: Tests zur Qualität der Probenahme von Schweinegülle aus Silo und Keller mittels Bypass-Sammler und Probensonde.

Probenahme		Matrixchara	Tetracyclin	
Datum	Probenahmeort /	pН	TM	[mg/kg TM]
	Probenahmetechnik		[%]	
15.02.2012	Silo, Gülle gerührt /	8.1	2.9	179 ⁰¹
	Bypass-Sammler	8.1	3.1	143 ^{02/1}
		8.2	3.0	171 ^{02/2}
	Silo, Gülle gerührt /	8.1	3.0	126
	Probensonde			
	Keller, Gülle nicht gerührt /	7.9	7.8	191
	Probensonde			
06.03.2012	Keller, Gülle nicht gerührt /	8.2	8.5	207 ⁰²
	Bypass-Sammler	8.3	8.7	201 ⁰³

TM: Trockenmasse, ⁰¹: Replikat 1, ⁰²: Replikat 2, ⁰³: Replikat 3, ^{02/1}: 1. Analyse von Replikat 2, ^{02/2}: 2. Analyse von Replikat 2.

3.2 Qualität verschiedener Probenahmetechniken

Für die Screening-Studie zu Antibiotika-Rückständen und Antibiotika-Resistenzgenen wurden etablierte Probenahmetechniken eingesetzt, die die Berücksichtigung unterschiedlicher betriebsspezifischer Lagerbedingungen in Kellern, Silos und Lagunen ermöglichten. Das zeigten vergleichende Untersuchungen in einem Betrieb (BRA 1), in dem Schweinegülle aus dem Silo und dem Keller mit Bypass-Sammler und Probensonde entnommen wurden. So ergaben sich für die mit dem Bypass-Sammler während des Abpumpens mit dem Vakuumtankwagen entnommenen Proben Konzentrationen von 164 ± 18.9 mg Tetracyclin/kg TM (**Tab. 4**). Direkt im Anschluss wurden im Silo auch Proben mit der 2 m langen Probensonde gezogen, mit der allerdings die tiefsten Sedimentationsschichten des Silos nicht erreicht wurden. Infolge der hohen Affinität von Tetracyclin zur

Feststoffmatrix der Gülle betrug die gemessene Konzentration nur 126 mg/kg TM. Geringfügig höhere Konzentrationen wurden im Güllekeller gefunden. Dabei war es aber weitgehend unabhängig, ob die Proben mit der Sonde oder 19 Tage später mit dem Bypass-Sammler während des Umpumpens der Gülle aus dem Keller in das Silo genommen wurden. Das verdeutlichte auch die Übereinstimmung der zur Matrixcharakterisierung gemessenen pH-Werte und Trockenmassen. Die Probenahmevariabilitäten im Tagesverlauf wurden während des eintägigen Abpumpens einer $1250 \, \mathrm{m}^3$ -Lagune (BRA 7) untersucht. Hier wurden morgens, mittags und abends von je 2 Vakuumtankwagenfüllungen im Rückfluss Mischproben entnommen. Dabei ergaben sich für Chlortetracyclin und Tetracyclin Rückstandskonzentrationen von $36.4 \pm 9.7 \, \mathrm{mg/kg}$ TM bzw. $37.7 \pm 6.7 \, \mathrm{mg/kg}$ TM. Unter Berücksichtigung der heterogenen Verteilung der Güllefeststoffe, die trotz ständigem Aufrührens der Schweinegülle während des Abpumpens zu beträchtlichen Anteilen am Grund der

Tab. 5: Qualität der Probenahme von Schweinegülle aus einer Lagune via Rückfluss vom Vakuumtankwagen im Tagesverlauf.

Lagune verblieben, wird durch diese sequentielle Probenahme die Belastung dieser Gülle mit

Chlortetracyclin und Tetracyclin weitgehend einheitlich wiedergegeben (Tab. 5).

Probenahme		Matrix-		Chlor-	Tetracyclin		
		charak	terisie-	tetracyclin			
			rung				
Datum	Probenahmeort /	Zeit	рН	TM	Inn or /I c	a TM1	
	Probenahmetechnik			[%]	[mg/k	g TM]	
25.02.2013	Lagune, Gülle gerührt /	morgens	8.1	3.1	36.0	40.3	
	Rückfluss vom Vakuum-	mittags	8.0	4.4	46.3 42.7		
	tankwagen	abends	7.9	6.4	26.9	30.0	

3.3 Screening-Studie zu Antibiotika-Rückständen

Von den 34 angewendeten Antibiotika aus 11 Wirkstoffklassen wurden 19 Leitsubstanzen ausgewählt, die in allen Schweinegülle- bis Gärrestproben untersucht wurden, da diese mit der in Anlehnung an Jacobsen und Halling-Sørensen (2006) und Zhou et al. (2012) adaptierten Analysenmethode simultan bis zu einer Bestimmungsgrenze von 0.2 mg/kg TM bestimmt werden konnten. Diese Auswahl an Leitsubstanzen stimmt soweit mit dem untersuchten Stoffspektrum der Untersuchungen von Zhou et al., 2013a, b; Li et al., 2013, Ratsak et al., 2013; Spielmeyer et al., 2014 überein. Andere Antibiotika aus den Wirkstoffklassen der β-Laktame, Makrolide etc. können aufgrund ihres unterschiedlichen chemischen Verhaltens während der Probenvorbereitung nicht in

diese Analysenmethode integriert werden. So existiert auch teilweise für ältere Antibiotika, z.B. das Polymyxin Colistin, bis heute keine Methode, diese in komplexen Matrices wie Schweinegülle nachzuweisen.

3.3.1 Betriebe mit konventioneller Güllelagerung und Gülleausbringung

Einen ersten Überblick über die Belastung mit Antibiotika in Schweinegüllen gibt **Tab. 6**. Es ist ersichtlich, dass häufig an größere Tiergruppen verabreichte Antibiotika in Schweinegülle bis in Konzentrationen von mg/kg TM nachgewiesen werden können. So lässt sich das hier in einigen Schweinemastbetrieben des Beratungsringes A häufig eingesetzte Tetracyclin in 20 Proben von 1.5-300 mg/kg TM mit einem Medianwert von 152 mg/kg TM finden. Die nächst höheren Konzentrationen wurden für Chlortetracyclin und Doxycyclin ermittelt. Medianwerte waren hier 26.9 mg/kg TM bzw. 20.3 mg/kg TM. Die Sulfonamide Sulfadiazin und Sulfadimidin traten nur in jeweils 1 Probe mit 0.7 mg/kg TM bzw. 0.6 mg/kg TM auf.

Entsprechend des breiteren Anwendungsmusters von Antibiotika konnte in den Schweinezuchtbetrieben des Beratungsringes B auch ein breiteres Muster an Antibiotika-Rückständen nachgewiesen werden. Am häufigsten detektiert wurde hier Doxycyclin mit einem Medianwert von 19.8 mg/kg TM, während höchste Konzentrationen von >200 mg/kg TM für Oxytetracyclin und Tetracyclin gefunden wurden. Unter den Sulfonamiden trat überwiegend Sulfadimidin in 5 Proben mit höchsten Konzentrationen von 23.0 mg/kg TM auf, während das als Synergist eingesetzte Trimethoprim nur in einer Probe detektiert wurde, die auch mit Sulfadimethoxin belastet war. Enrofloxacin und Tiamulin wurden nur in je einer Probe detektiert.

Die gefundenen Antibiotika-Rückstände spiegeln die Intensität der Antibiotika-Anwendungen in diesem Zentrum der Schweinehaltung wieder. Gleichzeitig stehen sie mit publizierten Rückstandsdaten anderer Untersuchungen im Einklang. So werden dort höchste Konzentrationen von 764 mg Chlortetracyclin/kg TM und 770 mg Oxytetracyclin/kg TM beschrieben (Pan et al., 2011; Gans et al., 2010). Die dort genannten Rückstandskonzentrationen der anderen Antibiotika stimmen ebenfalls mit den im Untersuchungsgebiet gefundenen überein.

3.3.2 Betriebe mit Biogasanlagen

In diesen Betrieben (BGA 1-5) war die hohe Anwendungshäufigkeit des Tetracyclin-Antibiotikums Doxycyclin auffällig. So ergaben sich in den untersuchten Schweinegülleproben 16 positive Nachweise von 1.7-381 mg/kg TM mit einem Medianwert von 27.4 mg/kg TM (**Tab. 7**). Auffällig waren auch die 6 Nachweise des Fluorchinolon-Antibiotikums Enrofloxacin, das in den anderen Betrieben

vielfach in der Einzeltiertherapie, hier aber auch zur Behandlung von Gruppen bis zu 300 Schweinen angewendet wurde. So betrugen die Konzentrationen 0.8-4.7 mg/kg TM.

Tab. 6: Antibiotika-Rückstände in Schweinegüllen der Schweinemast- und Schweinezuchtbetriebe mit konventionellem Güllemanagement in Niedersachsen im Vergleich zu Literaturwerten.

Betrieb	SDZ	SDM	SDX	SDMX	TMP	СТС	DOXY	OXY	TC	ENF	TYL	TIA
Schwein	Schweinegülle der Schweinemastbetriebe BRA 1-8 [mg/kg TM]											
Median						26.9	20.3		152			
MIN	n.d.	n.d.	n.d.	n.d.	n.d.	1.7	11.0	n.d.	1.5	n.d.	n.d.	n.d.
MAX	0.7	0.6	n.d.	n.d.	n.d.	46.3	28.9	6.2	300	n.d.	n.d.	n.d.
n	1	1	0	0	0	7	3	1	20	0	0	0
Schwein	egülle	der Sch	weinez	zuchtbet	riebe B	RB 1-8	[mg/kg	TM]				
Median		2.2				37.4	19.8	13.6	16.5			
MIN	n.d.	0.8	n.d.	n.d.	n.d.	15.8	5.0	0.6	1.5	n.d.	n.d.	n.d.
MAX	n.d.	23.0	n.d.	0.5	0.2	55.1	101	211	227	1.3	n.d.	1.4
n	0	5	0	1	1	4	12	5	6	1	0	1
Literaturwerte für Schweinegüllen [mg/kg TM]												
MIN	0.01 ¹	0.01 ¹	0.1 ³	0.34	n.d. ⁵	0.01 ⁶	0.01 ⁶	0.1 ⁵	nd ⁶	0.02 ¹	0.210	k.A.
MAX	35.3 ²	167 ²	32.7 ³	26.4 ⁴	0.3 ¹	764 ⁷	59.8 ⁴	770 ⁸	98.2 ⁹	2.2 ¹⁰	1.9 ¹⁰	k.A.

SDZ: Sulfadiazin, SDM: Sulfadimidin, SDX: Sulfadoxin, SDMX: Sulfadimethoxin, TMP: Trimethoprim, CTC: Chlortetracyclin, DOXY: Doxycyclin, OXY: Oxytetracyclin, TC: Tetracyclin, ENF: Enrofloxacin, TYL: Tylosin, TIA: Tiamulin.

MIN: Minimum, MAX: Maximum, TM: Trockenmasse, n.d.: nicht detektiert, k.A.: keine Angabe, n: Anzahl positiver Nachweise.

Literaturzitate: 1 : Zhou et al. (2013b), 2 : Winckler et al. (2004), 3 : Hu et al. (2010), 4 : Hu et al. (2008), 5 : Zhou et al. (2013a), 6 : Qiao et al (2012), 7 : Pan et al. (2011), 8 : Gans et al. (2010), 9 : Chen et al. (2012), 10 : Li et al. (2013).

Darüber hinaus wurden auch die Gärreste von Biogasanlagen untersucht, um somit das Eliminationspotential der anaeroben Stoffumwandlung für Antibiotika, die mit belasteten Schweinegüllen in Biogasanlagen eingetragen werden, zu überprüfen.

Tab. 7: Antibiotika-Rückstände in Schweinegüllen und Gärresten der Schweinezuchtbetriebe mit Biogasanlagen (BGA 1-5) in Niedersachsen im Vergleich zu Literaturwerten.

Dotrich	SDZ	SDM	SDX	SDMX	TMP	СТС	DOXY	OXY	TC	ENF	TYL	TIA
Betrieb	SDZ	SDIVI	SDV	SDIVIX	TIVIP	CIC	DOX1	UXT	10	EINF	IIL	HA
Schwein	Schweinegülle der Schweinezuchtbetriebe mit Biogasanlagen [mg/kg TM]											
Median							27.4		1.5	1.4		
MIN	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	1.7	n.d.	0.7	8.0	n.d.	n.d.
MAX	7.3	n.d.	n.d.	n.d.	n.d.	1.0	381	n.d.	5.9	4.7	6.4	n.d.
n	1	0	0	0	0	1	16	0	4	5	1	0
Literatur	werte fi	ür Schv	veinegi	illen [mg	/kg TM]						
MIN	0.7^{1}	7.0 ¹			0.05^{1}	3.5^{2}	n.d. ²	0.1 ³	1.5 ³	0.02^{3}		
MAX	1.1 ²	201 ²			0.48^{3}	36.5 ²		770 ³	6.6^{2}	1.4 ³		
Gärreste	der So	chweine	ezuchtb	etriebe ı	mit Bio	gasanla	agen [mg	g/kg TM	1]			
Median							6.2		1.5	0.2		
MIN	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	1.3	n.d.	0.9	0.2	n.d.	n.d.
MAX	0.9	n.d.	n.d.	n.d.	n.d.	0.9	10.5	n.d.	2.1	0.3	n.d.	n.d.
n	1	0	0	0	0	1	14	0	4	2	0	0
Literaturwerte für Gärreste [mg/kg TM]												
MIN	1.7 ²	0.3^{4}	k.A.	k.A.	k.A.	n.d. ²	n.d. ²	0.2^{3}	1.0 ⁴	1.1 ¹	k.A.	k.A.
MAX	6.3 ¹	76.2 ²	k.A.	k.A.	k.A.	3.7 ²	k.A.	24.0 ³	17.0 ¹	2.8 ³	k.A.	k.A.

SDZ: Sulfadiazin, SDM: Sulfadimidin, SDX: Sulfadoxin, SDMX: Sulfadimethoxin, TMP: Trimethoprim, CTC: Chlortetracyclin, DOXY: Doxycyclin, OXY: Oxytetracyclin, TC: Tetracyclin, ENF: Enrofloxacin, TYL: Tylosin, TIA: Tiamulin.

MIN: Minimum, MAX: Maximum, TM: Trockenmasse, n.d.: nicht detektiert, k.A.: keine Angabe, n: Anzahl positiver Nachweise.

Literaturzitate ¹: Ratsak et al. (2013), ²: Spielmeyer et al. (2014), ³: Gans et al. (2010), ⁴: Gans et al. (2008).

Wie aus **Tab. 7** hervorgeht, können die in Güllen gefundenen Antibiotika auch in Gärresten wiedergefunden werden. Doxycyclin wurde so in 14 Gärrestproben mit 1.3-10.5 mg/kg TM und einem Medianwert von 6.2 mg/kg TM nachgewiesen. Selbst das Sulfonamid Sulfadiazin, das in Labor-Fermentationstests als schnell abbaubar identifiziert wurde (Mohring et al., 2009), konnte in einem Schweinezuchtbetrieb mit hofeigener Biogasanlage (BGA 1) nach einmaliger Verabreichung an

800 Schweine zeitnah zur Probenahme im Frühjahr 2012 in Gülle mit 7.3 mg/kg TM und Gärrest mit 0.9 mg/kg TM detektiert werden. Diese Ergebnisse stehen in Einklang mit denen von Spielmeyer et al. (2014), die Sulfadiazin in einer Biogasanlage mit Konzentrationen von 1.1 mg/kg TM Input-Material bzw. 1.7 mg/kg TM Output-Material von Fermentern fanden. Auch Ratsak et al. (2013) konnten in einer Gärrestprobe 6.3 mg Sulfadiazin/kg TM feststellen.

Der Vergleich der in Schweinegülle- und Gärrestproben gemessenen Antibiotika-Rückstände zeigt Konzentrationsabnahmen von den Input- zu den Output-Materialien. Diese können zum einen teilweise auf die anaerobe Biotransformation oder die irreversible Sorption zu Fermenter- und Nachgärermaterialien zurückzuführen sein. Zum anderen muss aber auch ein signifikanter Verdünnungseffekt durch die Zugabe von Maissilage als weiteres Gärsubstrat berücksichtigt werden. Ferner ist einzubeziehen, dass die Schweinegülle- und Gärrestproben im Rahmen der Probenahme an einem Tag entnommen wurden, obgleich die in den Fermenter eingebrachten Gärsubstrate dort 60-100 Tage verweilen, bevor diese in die Endlager überführt werden. Damit lassen sich Abbauprozesse in Biogasanlagen kaum exakt bilanzieren, weswegen in diesem Forschungsvorhaben für ausgewählte Leitsubstanzen, i.e. Sulfadiazin, Enrofloxacin und Doxycyclin, auch Labor-Fermentationstests durchgeführt wurden (s. Kapitel 3.6). Die hier für Betriebe mit Biogasanlagen erzielten Ergebnisse belegen dennoch ganz deutlich, dass die vollständige Elimination von Antibiotika aus Schweinegüllen durch Biogasanlagen nicht garantiert werden kann. Das wird wiederum durch die Untersuchung von Spielmeyer et al. (2014) bestätigt, die für Sulfadimidin in einer Biogasanlage Konzentrationen von 201 mg/kg TM Input- und 76 mg/kg TM Output-Material bestimmten.

3.4 Betriebsspezifische Antibiotika-Anwendungen und Rückstandssituationen

3.4.1 Betriebe mit Güllelagerung und Gülleausbringung

In den an diesem Forschungsvorhaben beteiligten landwirtschaftlichen Betrieben war es teilweise möglich, die Arzneimittel-Abgabebelege einzusehen, um so einen Einblick in die Muster und Frequenzen der angewendeten Antibiotika zu erhalten. Damit konnten gefundene Antibiotika-Rückstände in der Schweinegülle den betriebsspezifischen Antibiotika-Anwendungen überwiegend zugeordnet werden. So nehmen mit der steigenden Anzahl von 6 auf 8 Behandlungen größerer Tiergruppen die im Schweinemastbetrieb BRA 1 ermittelten Tetracyclin-Rückstände von 179 mg/kg TM auf 300 mg/kg TM zu, um dann mit vermindertem Tetracyclin-Einsatz (6 Behandlungen) im dritten Untersuchungszeitraum auf 265 mg/kg TM zu sinken (**Tab. 8**). Diese Tetracyclin-Rückstände, die über dem für diese 8 untersuchten Schweinemastbetriebe bereits hohen Medianwert von 152 mg/kg TM liegen, sind auf die Behandlungsintensität, aber auch auf die Exkretionsrate, die für Tetracyclin bis zu 90 % betragen kann (Kumar et al., 2005), zurückzuführen.

Tab. 8: Tetracyclin-Rückstände in Schweinegülle in Abhängigkeit zur Tetracyclin-Anwendung in einem Schweinemastbetrieb (BRA 1) von Herbst 2011 bis Frühjahr 2013.

Probenahme	Antibio	otika-Abgaben	Entnahme-	Tetracyclin
	Zeitraum	Anwendungen / Tiere	ort	[mg/kg TM]
15.02.2012	09/11-02/12	6 / 140-288	Silo	179
04.09.2012	02/12-09/12	8 / 140-208		300
22.02.2013	09/12-03/13	6 / 144-176		265

Für einen weiteren Schweinemastbetrieb (BRA 7) ergibt sich für die regelmäßige Anwendung von Chlortetracyclin ein ähnliches Bild. So führten 3 Anwendungen für Gruppen von 580-820 Schweinen zu Konzentrationen von 29.5 mg/kg TM im Güllekeller. Zu demselben Zeitpunkt betrug die Konzentration in der Gülle aus der Lagune 4.9 mg/kg TM. Solche Konzentrationsunterschiede können sich ergeben, wenn zum Zeitpunkt der Probenahmeaktivität die stärker belastete Schweinegülle aus dem Keller noch nicht in Lagune oder Silo überführt worden war. Bei Fortführung der Chlortetracyclin-Anwendungen mit 2 Behandlungen bis Herbst 2012 und 3 Behandlungen bis Frühjahr 2013 von jeweils 580-820 Schweinen wurden dann auch in der Schweinegülle aus der Lagune Rückstände von 26.6 mg/kg TM bzw. 36.4 mg/kg TM gefunden.

Wie aus **Tab. 9** hervorgeht, konnten trotz des Einsatzes von Sulfadiazin mit Trimethoprim, Doxycyclin, Enrofloxacin und Tylosin für diese Antibiotika keine Rückstände im Güllekeller oder der Lagune oberhalb der Bestimmungsgrenze von 0.2 mg/kg TM ermittelt werden. Für die anderen dort gelisteten Antibiotika wurden dagegen in der Lagune Sulfadimidin mit 0.62 mg/kg TM, Oxytetracyclin mit 6.2 mg/kg TM und Tetracyclin mit 1.5 mg/kg TM nachgewiesen, ohne dass hier Hinweise zur Anwendung in der Schweinemast vorlagen. Inwieweit es sich bei Sulfadimidin und Oxytetracyclin um Rückstände aus früheren Anwendungen handelt oder auch die anteilige Einbringung von Hühnertrockenkot aus der betriebseigenen Geflügelhaltung in die Lagune ein Rolle spielt, lässt sich aus den vorliegenden Betriebsinformationen nicht ableiten. Tetracyclin könnte dabei auch als Metabolit von Chlortetracyclin entstanden sein (Martínez-Carballo et al., 2007; Freitag et al., 2008), worauf die höheren Konzentrationen in der Gülle aus dem Keller gegenüber der aus der Lagune hindeuten.

Tab. 9: Antibiotika-Rückstände in Schweinegülle eines Schweinemastbetriebes (BRA 7) im Frühjahr 2012.

Antibiotika	Abgaben 09/2011-02/2012		Keller	Lagune	
	Anzahl Tiere		Konzentration [mg/kg TM]		
Sulfadiazin	1	380	n.d.	n.d.	
Sulfadimidin			n.d.	0.62	
Trimethoprim	1	380	n.d.	n.d.	
Chlortetracyclin	3	580-820	29.5	4.9	
Doxycyclin	1	365	n.d.	n.d.	
Oxytetracyclin			n.d.	6.2	
Tetracyclin			2.4	1.5	
Enrofloxacin	1	30	n.d.	n.d.	
Tylosin	1	800	n.d.	n.d.	

TM: Trockenmasse, n.d.: nicht detektiert, ---: keine Abgabe.

3.4.2 Betriebe mit Biogasanlagen

In 2 Schweinezuchtbetrieben mit hofeigenen Biogasanlagen wurde für Doxycyclin der Zusammenhang zwischen Antibiotika-Anwendung und dem Auftreten von Rückständen in Schweinegüllen bis zu den Gärresten in höherer zeitlicher Auflösung von März 2012 bis Januar 2014 untersucht. In BGA 3 erfolgte so 12 Tage vor der ersten Probenahme eine Doxycyclin-Behandlung von 280 Schweinen (**Tab. 10**). Zum Zeitpunkt der Probenahme konnte Doxycyclin zwar bereits in der Gülle mit 24.7 mg/kg TM, aber nicht im Fermenter, Nachgärer sowie im Endlager nachgewiesen werden. Von März bis Mai 2012 folgten dann 3 Behandlungen von 200-300 Schweinen, so dass in der Gülleprobe die Doxycyclin-Konzentration auf 166 mg/kg TM anstieg und Rückstände auch im Fermenter (0.37 mg/kg TM), Nachgärer (2.0 mg/kg TM) und Endlager (2.1 mg/kg TM) nachgewiesen wurden. Bis Januar 2014 folgte in diesem Betrieb kein weiterer Einsatz von Doxycyclin. Dennoch konnten in Proben aller Entnahmeorte Rückstände festgestellt werden. Dabei lagen die Konzentrationswerte in Gülle bis Januar 2013 um 11.7 mg/kg TM, um danach leicht anzusteigen. Doxycyclin-Konzentrationen im Fermenter, Nachgärer und Endlager blieben dagegen weitgehend konstant.

Tab. 10: Doxycyclin-Abgaben und Rückstände in einem Schweinezucht- und Schweinemastbetrieb mit hofeigener Biogasanlage (BGA 3).

Probenahme	Antibiotika-Abgaben		Entnahme-	Doxycyclin	
	Zeitraum	Anzahl/Tiere	ort	[mg/kg TM]	
28.03.2012	01/12-03/12	1/280	Güllekeller	24.7	
			Fermenter	n.d.	
			Nachgärer	n.d.	
			Endlager	n.d.	
19.09.2012	03/12-09/12	3/200-300	Güllekeller	166	
			Fermenter	0.37	
			Nachgärer	2.0	
			Endlager	2.1	
30.01.2013			Güllekeller	11.7	
			Fermenter	2.0	
			Nachgärer	n.a.	
			Endlager	3.0	
27.02.2013			Güllekeller	13.7	
			Fermenter	3.5	
			Nachgärer	3.3	
			Endlager	4.8	
18.03.2013			Güllekeller	13.9	
			Fermenter	1.5	
			Nachgärer	2.5	
			Endlager	4.0	
17.09.2013			Güllekeller	68.9	
			Fermenter	1.1	
			Nachgärer	2.1	
			Endlager	3.9	
16.01.2014			Güllekeller	48.8	
			Fermenter	5.9	
			Nachgärer	n.a.	
			Endlager	2.3	

TM: Trockenmasse, n.a.: nicht analysiert, n.d.: nicht detektiert, ---: keine Abgabe

Tab. 11: Doxycyclin- und Enrofloxacin-Abgaben und Rückstände in einem Schweinezucht- und Schweinemastbetrieb mit hofeigener Biogasanlage (BGA 4).

Probe-	Antibiotika-Abgaben		Entnahme-	Doxycyclin	Enrofloxacin
nahme	Zeitraum	Anzahl/Tiere	ort	[mg/kg TM]	[mg/kg TM]
28.03.2012	09/11-02/12	Doxycyclin:	Güllesilo	32.1	2.4
		28/140-700	Fermenter	n.a.	n.a.
		Enrofloxacin:	Nachgärer/		
		20/20-300	Endlager	4.9	n.d.
20.09.2012	03/12-09/12	Doxycyclin:	Güllekeller	110	1.4
		21/150-400	Fermenter	7.0	n.d.
		Enrofloxacin:	Nachgärer/		
		6/125-275	Endlager	10.1	0.20
28.02.2013	09/12-02/13	Doxycyclin:	Güllesilo	21.4	0.83
		26/83-400	Güllekeller	30.0	4.7
		Enrofloxacin:	Fermenter	6.4	n.d.
		15/3-125	Nachgärer/		
			Endlager	10.2	0.26
29.05.2013	02/13-05/13	Doxycyclin:	Güllekeller *	54.5	0.80
		19/130-520	Güllekeller xx	20.1	1.7
		Enrofloxacin:	Fermenter	4.0	n.d.
		15/6-225	Nachgärer/		
			Endlager	7.7	n.d.
23.08.2013	05/13-08/13	Doxycyclin:	Güllesilo	n.a.	n.a.
		11/110-330	Güllekeller	n.a.	n.a.
		Enrofloxacin:	Fermenter	4.5	n.d.
		13/9-225	Nachgärer/		
			Endlager	n.a.	n.a.
09.01.2014	08/13-01/14	Doxycyclin:	Güllesilo	n.a.	n.a.
		21/110-350	Güllekeller	n.a.	n.a.
		Enrofloxacin:	Fermenter	8.7	n.d.
		23/3-200	Nachgärer/		
			Endlager	11.5	n.d.

TM: Trockenmasse, n.a.: nicht analysiert, n.d.: nicht detektiert, *: Mastbereich, **: Zuchtbereich

Eine ähnliche Rückstandssituation zeichnete sich auch im Betrieb BGA 2 ab. Von Februar bis Juni 2012 erfolgten 8 Doxycyclin-Behandlungen von 1000-2000 Schweinen, so dass im September 2012 Rückstände im Güllekeller (39.5 mg/kg TM), Fermenter (5.4 mg/kg TM), Nachgärer (7.9 mg/kg TM) und Endlager (7.4 mg/kg TM) festgestellt wurden. Ohne jeden weiteren Doxycyclin-Einsatz wurde bis Februar 2013 eine Konzentrationsabnahme im Güllekeller (1.9 mg/kg TM), Fermenter (1.1 mg/kg TM) und Nachgärer (4.6 mg/kg TM) festgestellt, während es zu einer Konzentrationszunahme im Endlager auf 10.5 mg/kg TM kam. Aus diesen Ergebnissen zeichnet sich der Schluss ab, dass einmal mit der Gülle eingetragenes Doxycyclin noch längerfristig im Fermenter, Nachgärer und Endlager nachgewiesen werden kann.

Im Untersuchungszeitraum bis Januar 2014 erfolgten im Betrieb BGA 4 durchgehend Behandlungen größerer Tiergruppen mit Doxycyclin und Enrofloxacin. So konnten nach 28 Doxycylin-Behandlungen von 140-700 Schweinen bis März 2012 Rückstände in Gülle und Gärrest von 32.1 mg/kg TM bzw. 4.9 mg/kg TM festgestellt werden (**Tab. 11**). Während in der Gülle in Abhängigkeit von weiteren Doxycyclin-Anwendungen und dem Entnahmeort, i.e. Güllesilo und Güllekeller im Mast- und Zuchtbereich, Konzentrationen von 20.1-110 mg/kg TM auftraten, wurden im Fermenter eher gleichbleibende Konzentrationen zwischen 4.0-8.7 mg/kg TM bestimmt. Im Endlager zeichnete sich dagegen für Doxycyclin ein geringfügiger Konzentrationsanstieg von 4.9 mg/kg TM auf 11.5 mg/kg TM ab. Da das Fluorchinolon-Antibiotikum Enrofloxacin hier auch an Tiergruppen bis zu 300 Schweinen verabreicht wurde, konnte es in Gülleproben in Konzentrationen von 0.83-4.7 mg/kg TM und teilweise in Gärrestproben im Bereich der Bestimmungsgrenze von 0.2 mg/kg TM nachgewiesen werden.

Die bereits für Doxycyclin beschriebene Rückstandssituation in den einzelnen hofeigenen Biogasanlagen wurde durch die für den Betrieb BGA 5 erzielten Ergebnisse noch einmal belegt. Auch hier
führte mit Doxycyclin belastete Schweinegülle zu Rückständen in Fermenter 1 und 2, die in diesem
Betrieb parallel mit Gärsubstraten beschickt werden. Trotz einer Verweilzeit von 67 Tagen je Fermenter konnte Doxycyclin auch in den Gärresten nachgewiesen werden, was wiederum verdeutlichte, dass dieses Tetracyclin-Antibiotikum durch den Fermentationsprozess nicht vollständig eliminierbar ist.

Für die Biogasanlagen (BGA 6-9), die mit verschiedenen Input-Materialien von verschiedenen landwirtschaftlichen Betrieben versorgt wurden, war die Erfassung der Antibiotika-Einträge nicht möglich. Dennoch wurden einzelne Input-Materialien, z.B. Schweine- und Rindergülle sowie Hühnertrockenkot, zuzüglich zu den Biogasmaterialien aus Fermentern Nachgärern und Endlagern im Herbst 2012 oder Frühjahr 2013 entnommen und auf die 19 Leitsubstanzen untersucht, um die Antibiotika-Rückstandssituation in Gärresten näher einschätzen zu können.

In BGA 6 konnten so Rückstände von Tetracyclin mit 9.2 mg/kg TM im Fermentermaterial, 4.4 mg/kg TM im Nachgärermaterial und 6.4 mg/kg TM in den Gärresten bestimmt werden. Diese könnten aus einem der Gülle liefernden Schweinezuchtbetriebe stammen. Hier wurden in den

Gülleproben aus dem Keller 3.8 mg/kg TM und 14.4 mg/kg TM aus dem Silo gefunden. Für die in Gärresten gefundenen Rückstände von Doxycyclin von 2.2 mg/kg TM lässt sich eine Quelle nicht zuordnen. Rückstände von Enrofloxacin im Hühnertrockenkot von 1.7 mg/kg TM, in dem auch der Metabolit Ciprofloxacin mit 1.1 mg/kg TM detektiert werden konnte, führten zu keiner nachweisbaren Belastung dieser Biogasanlage.

Die Untersuchungen des Milchviehbetriebes mit Biogasanlage (BGA 7) ergaben von der Gülle (0.7 mg/kg TM) zu den Gärresten (0.4 mg/kg TM) eine geringfügige Tetracyclin-Belastung. Chlortetracyclin konnte nur in der Gülle (0.4 mg/kg TM) nachgewiesen werden. Im Gegensatz zur Schweinegülle war diese Rindergülle weniger mit Antibiotika belastet. In der Biogasanlage BGA 8, die mit verschiedensten Input-Materialien von separierten Rinder- und Schweinegüllen, Pferdemist und Ganzpflanzensilagen verschiedener Betriebe beschickt wird, konnten am 20.11.2012 in Fermenter 1 und 2, Nachgärer und Endlager keine Rückstände der 19 Leitsubstanzen festgestellt werden. Am 19.09.2013 wurden Sulfadiazin mit 0.37 mg/kg TM und Tetracyclin mit 0.32 mg/kg TM nachgewiesen. In der mit überwiegend nachwachsenden Rohstoffen und nur teilweise Rindergülle betriebenen Biogasanlage BGA 9 konnten Antibiotika-Rückstände nicht detektiert werden.

3.5 Screening-Studie zu Antibiotika-Resistenzgenen

3.5.1 Bioanalytische Untersuchungen von Schweinegüllen und Proben aus Biogasanlagen

Neben den rückstandsanalytischen Untersuchungen von Schweinegülle- bis zu Gärrestproben auf Antibiotika wurden diese Proben auch auf Antibiotika-Resistenzgene (ARGs) und mobile genetische Elemente (MGEs) analysiert. Mit Hilfe etablierter PCR-Systeme und anschließender Southern Blot Hybridisierungen konnte eine Vielzahl von Plasmiden unterschiedlicher transferabler Inkompatibilitätsgruppen von Plasmiden sowohl in den Güllen als auch in den Proben aus Biogasanlagen nachgewiesen werden (s. Tab. B6-B11). Auffällig hierbei ist, dass sich eine höhere Diversität an Plasmiden in Schweinegüllen aus Zuchtbetrieben verglichen mit denen aus Mastbetrieben feststellen ließ (Tab. 12). Dieses könnte auf das breitere Spektrum angewandter Antibiotika zur prophylaktischen Behandlung der Ferkel zurückzuführen sein. In allen untersuchten Güllen und Proben aus BGAs konnten IncP-1 und IncQ-Plasmide nachgewiesen werden. Beide Plasmidtypen haben einen sehr großen Wirtsbereich. Während das IncP-1 Plasmid selbsttransferabel (konjugativ) ist, benötigen die mobilisierbaren IncQ-Plasmide Helferplasmide wie z.B. IncP-1 Plasmide. Der parallele Nachweis beider Plasmidtypen deutet darauf hin, dass eine Genmobilisierende Aktivität in allen untersuchten Güllen vorhanden war. Durch die Anwesenheit dieser unterschiedlichen transferierbaren Plasmide in den Güllen besteht die Gefahr einer Resistenzübertragung auf Bodenbakterien.

Tab. 12: Detektion von mobilen genetischen Elementen (MGEs) und Antibiotika-Resistenzgenen (ARGs) in Gülleproben aus Schweinemast- (BRA) und Schweinezuchtbetrieben (BRB) sowie aus Betrieben mit Biogasanlagen (BGA) mittels PCR und Southern Blot Hybridisierung (Anzahl positiv getesteter Proben / Anzahl getesteter Proben gesamt).

Quelle	IncP-1	IncQ	IncW	IncU	LowGC	IncN	intl1	intl2
Mast	22/22	22/22	3/8	6/14	-	-	6/8	1/8
Zucht	17/17	17/17	8/9	13/17	1/9	7/9	9/9	1/9
Biogasanlage	18/19	19/19	19/19	5/9	4/8	-	10/10	10/10
	sul1	sul2	sul3	tetA	tetM	tetX	qacE	qacE∆1
Mast	20/20	20/20	9/20	8/8	8/8	8/8	-	8/8
Zucht	17/17	17/17	-	9/9	9/9	9/9	-	9/9
Biogasanlage	19/19	19/19	9/19	19/19	10/10	10/10	-	19/19

Ebenfalls konnte eine Vielzahl von ARGs detektiert werden (s. Tab. B1-B5). Alle getesteten ARGs, mit Ausnahme von *sul3*, konnten in allen untersuchten Proben nachgewiesen werden. So wurden in allen Gärresten parallel die Sulfonamid-Resistenzgene *sul1* und *sul2* und zusätzlich Repräsentanten aus allen bisher bekannten Klassen von Tetracyclin-Resistenzgenen detektiert (**Tab. 12**). *sul3* hingegen wurde mit schwachen Hybridisierungssignalen nur in vereinzelten Proben aus BGAs und Schweinegüllen gefunden. Zusätzlich ließ sich das Resistenzgen *qacE*Δ1, welches Resistenzgen quaternäre Ammoniumverbindungen vermittelt und mit klinischen Klasse 1 Integrons assoziiert ist, in allen getesteten Proben detektieren. Dieses Gen ist ein funktionales Fragment des Gens *qacE*, das im Gegensatz zu *qacE*Δ1 in keiner Probe gefunden wurde.

3.5.2 Einfluss der Prozessierung von Schweinegüllen in Biogasanlagen

Um Hinweise auf eine mögliche Reduzierung von MGEs und ARGs während der anaeroben mesophilen Gärung in BGAs und im Zuge der Lagerung der Gärreste zu gewinnen, wurde die TC-DNA der entsprechenden Proben mittels quantitativer real-time PCR (qPCR) für *rrn*, *sul1*, *sul2*, *tetM*, *tetQ*, *tetW*, *int1*, *int2*, *qacE/qacEΔ1*, *korB*, *traN* und *trfA* analysiert (s. Abb. B1-B27). Hierdurch konnte bestimmt werden, dass die 16S rRNA-Genkopienzahl (rrn) für alle Proben im Bereich von 1.8 x 10¹¹ - 2.15 x 10¹²/g TM pelletierter Probe lag (s. Abb. B24-B27). Desweiteren zeigte sich, dass in den untersuchten BGAs die relative Abundanz von *sul1*, *tetM*, *tetQ*, *qacE/qacEΔ1*, *intl1* und *korB* im Fermenter deutlich niedriger war, aber in den Gärresten nach der Lagerung zum Teil wieder anstieg (s. Abb. B1-B2, Abb. B9-B10, Abb. B12-B14, Abb. B21). Im Gegensatz hierzu konnte für das Zielgen *tetW* eine Zunahme der relativen Abundanz im Fermenter beobachtet werden (s.

Abb. B11). Im Falle der Gene sul2 und intl2 ließ sich kein einheitlicher Einfluss der mesophilen Fermentation auf deren relative Abundanz erkennen (s. Abb. B5-B6, Abb. B15-B16). Die Interpretation der Daten wird dadurch erschwert, dass die Gülle, die zusammen mit den Co-substraten das Fermentermaterial bildet, zu einem früheren Zeitpunkt in den Fermenter eingebracht wurde, als die Gülle, die für den Ergebnisvergleich herangezogen wurde. Außerdem ist durch die Mischung der Gülle mit Pflanzenmaterial auch ein Verdünnungseffekt zu berücksichtigen. Obwohl die relative Abundanz aller untersuchten ARGs und MGEs in den Gärresten deutlich niedriger als in der Ausgangsgülle war, liegt basierend auf den qPCR-Daten in den Gärresten eine hohe Belastung vor. Daraus resultiert, dass die mesophile Fermentation in Biogasanlagen nicht dazu geeignet ist, ARGs und MGEs in Schweinegüllen in ausreichendem Maße zu reduzieren. Die relativen Abundanzen der untersuchten Gene lagen deutlich über der Abundanz von ARGs und MGEs in den Böden, auf die die Gärreste als Dünger ausgebracht wurden. Durch den Eintrag dieser Gene in den Boden besteht die Möglichkeit der Übertragung von Antibiotikaresistenzen auf die mikrobielle Bodengemeinschaft. In Tab. 13 ist eine Übersicht über den Bereich der relativen Abundanzen der untersuchten Gene in den unterschiedlichen Prozessierungsschritten zusammengestellt. Da die ermittelten Werte für die Plasmid spezifischen Sequenzen (trfA, korB und traN) sehr niedrig bzw. unterhalb der Detektionsgrenze lagen, was eine aussagekräftige Auswertung erschwert, wurden diese in dieser Tabelle nicht berücksichtigt.

3.5.3 Zusammensetzung der bakteriellen Gemeinschaften in unterschiedlichen Prozessierungsstufen der Biogasanlagen

Die DGGE-Analyse von 16S rRNA-Genfragmenten, die aus der Gesamt-DNA mittels PCR amplifiziert wurden, zeigte, dass die bakteriellen Fingerprints der Proben von verschiedenen Stufen des Biogasprozesses sich deutlich voneinander unterschieden (s. Abb. B28-B35). Während die Wiederholungen des gleichen Probentyps über eine hohe Ähnlichkeit verfügten und daher auch zusammen "clusterten", bildeten die verschiedenen Stufen des Biogas-Prozesses separate Cluster. Diese Beobachtung wurde auch durch die Ergebnisse der Pyrosequenzierung der Proben aus BGA 3 untermauert, die eine deutlichen Änderung in der Zusammensetzung der bakteriellen Gemeinschaft während der anaeroben mesophilen Fermentation anzeigten (s. Tab. B25). Des Weiteren konnte festgestellt werden, dass die analysierten Gärreste zwar alle eine ähnliche Zusammensetzung hinsichtlich ihrer bakteriellen Gemeinschaft aufwiesen, sich aber dennoch die Gärreste der einzelnen BGAs voneinander unterschieden (s. Tab. B24, Tab. B26). In allen Gärresten sowie der Gülle und dem Fermenter der BGA 3 waren die dominanten Phyla Firmicutes (54.7-74.6%) und Bacteroidetes (6.9-26.0%), wobei die Mehrzahl der als Firmicutes eingestuften Sequenzen noch weiter der Klasse Clostridia zugeordnet wurden. Enterobacteriaceae wurden in keiner Probe nach-

gewiesen, was darauf hinweist, dass sie in den untersuchten Proben nur in sehr niedriger Abundanz oder gar nicht vorkommen.

Tab. 13: Bereiche relativer Abundanzen einzelner Gene in unterschiedlichen Proben (bezogen auf die Anzahl von 16S rRNA Genkopien). Aufgeführt sind die logarithmierten Quotienten aus der Anzahl Genkopien des Zielgens (\downarrow = Abnahme, \leftrightarrow = kein einheitlicher Effekt, \uparrow = Zunahme).

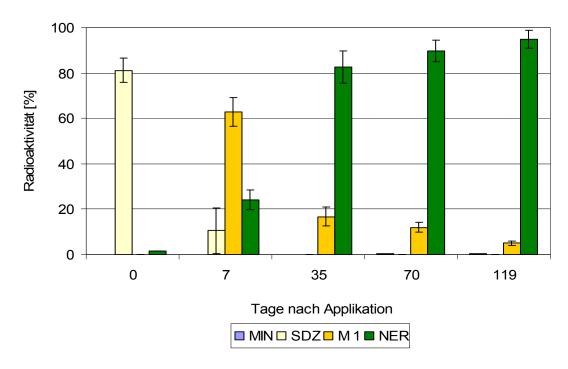
	sul1		sul2		qacE∆1	
Probe	Bereich der	Trend	Bereich der	Trend	Bereich der	Trend
	relat. Abun-		relat. Abun-		relat. Abun-	
	danz (LOG)		danz (LOG)		danz (LOG)	
Gülle	-1,47 bis -2,59		-1,47 bis -2,91		-1,45 bis -2,50	
Fermenter	-2,28 bis -2,99	\downarrow	-1,59 bis -2,89	\leftrightarrow	-2,99 bis -3,35	\downarrow
Nachgärer	-2,51 bis -2,82	\leftrightarrow	-1,82 bis -3,12	\leftrightarrow	-2,62 bis -4,63	\leftrightarrow
Gärrest	-2,16 bis -3,10	↑	-1,82 bis -2,88	↑	-2,26 bis -2,88	↑
	tetM		tetQ		tetW	
Probe	Bereich der	Trend	Bereich der	Probe	Bereich der	Trend
	relat. Abun-		relat. Abun-		relat. Abun-	
	danz (LOG)		danz (LOG)		danz (LOG)	
Gülle	-1,32 bis -2,05		-1,69 bis -3,35	Gülle	-1,15 bis -2,58	
Fermenter	-1,81 bis -2,53	\downarrow	-2,61 bis -3,07	Fermenter	-1,36 bis -1,75	↑
Nachgärer	-2,06 bis -2,55	\leftrightarrow	-2,21 bis -3,18	Nachgärer	-1,37 bis -3,18	\leftrightarrow
Gärrest	-2,02 bis -2,52	↔/↑	-2,63 bis -2,97	Gärrest	-1,35 bis -1,72	\leftrightarrow
	intl1		intl2			
Probe	Bereich der	Trend	Bereich der	Trend		
	relat. Abun-		relat. Abun-			
	danz (LOG)		danz (LOG)			
Gülle	-2,16 bis -3,08		-3,09 bis -4,71			
Fermenter	-3,10 bis -3,63	\downarrow	-3,38 bis -4,49	\leftrightarrow		
Nachgärer	-3,42 bis -3,56	\leftrightarrow	-3,89 bis -5,27	\leftrightarrow		
Gärrest	-3,12 bis -3,81	↑	-2,97 bis -4,93	↑		

3.5.4 Exogene Plasmidisolierung

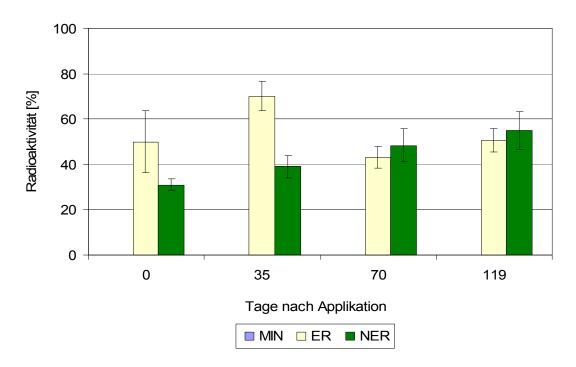
Aus annähernd allen Proben konnten mittels exogener Plasmidisolierung transferable Plasmide in *E. coli* und/oder *P. putida* als Rezipient gefischt werden, wobei die Transferraten meistens im Bereich von 10⁻⁴ bis 10⁻⁸ lagen. Es zeigte sich allerdings im Laufe anschließender Analysen, dass bei

der exogenen Plasmidisolierung mit E. coli als Rezipient ein starkes Hintergrundwachstum durch andere Bakterien, die resistent gegen die eingesetzten Antibiotika waren, auftrat. Unabhängig davon konnten alle P. putida-Transkonjuganten bestätigt werden. Anhand der Ergebnisse der angewandten DNA-basierten Methoden (s. Tab. B12-B14, Tab. B18-B21) konnten 40 von 101 gefischten Plasmiden der Gruppe der IncP-1ε-Plasmide zugeordnet werden, die sich durch einen besonders breiten Wirtsbereich und ihre hohe Transferabilität auszeichnen. Des Weiteren konnte gezeigt werden, dass die meisten Plasmide Klasse 1 Integrons mit Genkassetten unterschiedlicher Größe beinhalten. Anschließend wurde anhand der gefundenen Unterschiede eine Auswahl der Plasmide für weiterführende Analysen getroffen. Diese Plasmide konnten alle erfolgreich in E. coli DH5α transformiert werden. Die anschließende Durchführung von Antibiogrammen zeigte, dass die gefischten Plasmide u.a. Resistenz gegen Tetracycline, Sulfonamide und Trimethoprim vermitteln (s.Tab. B23). Zudem konnte mithilfe der qPCR in allen Transformanten das Integrasegen intl1, gacE∆1 und sul1 sowie mit konventionellen PCR-Systemen tetA und Integron-Genkassetten unterschiedlicher Größe nachgewiesen werden. Die Auswertung der Restriktionsmuster (s. Abb. B50) und der Antibiogramme ergab eine eher niedrige Diversität der Plasmide. Die Tatsache, dass die relative Abundanz der IncP-1-Plasmide in den getesteten Proben mit Werten von 10^{-5,6} bis zur Nachweisgrenze lag, aber die Mehrheit der aus diesen Proben gefischten Plasmide dieser Gruppe angehört, spiegelt deren hohe Transferabilität wider.

Die erzielten Ergebnisse sprechen dafür, dass weder die Lagerung von Schweinegülle noch deren anaerobe, mesophile Fermentation in BGAs eine geeignete Mitigationsstrategie für ARGs oder MGEs darstellen. So besteht bei der Ausbringung der Gärreste und Schweinegüllen als Dünger auf landwirtschaftlich genutzte Böden das Risiko eines Resistenztransfers auf die bakterielle Bodengemeinschaft. Dieses ist von besonderer Bedeutung aufgrund der Tatsache, dass Forsberg et al. (2012) einen Austausch von ARGs, welche auf MGEs lokalisiert sind, zwischen Bodenbakterien und klinischen Pathogenen nachgewiesen haben. Im Hinblick auf das zunehmende Auftreten von multiresistenten oder gar omniresistenten Krankheitserregern besteht somit dringender Bedarf an geeigneteren Maßnahmen zur Reduzierung von ARGs und MGEs in Schweinegüllen und Gärresten.


3.6 Laborexperimente

In der Screening-Studie in Schweinemast- und Schweinezuchtbetrieben ohne und mit Biogasanlagen konnten Antibiotika-Rückstände und Antibiotika-Resistenzgene von der Schweinegülle bis in die Gärreste nachgewiesen werden. Mit den durchgeführten Laborexperimenten zur Simulation konventioneller und alternativer Güllebehandlungsverfahren wurden deswegen 2 Ziele verfolgt: Zum einen galt es, das Rückstandsverhalten der ausgewählten Leitsubstanzen Sulfadiazin und Enrofloxacin, beide hier als ¹⁴C-markierte Radiotracer eingesetzt, sowie Doxycyclin während der Güllelagerung, der anaeroben Stoffumwandlung und der Gärrestlagerung zu untersuchen. Zum anderen wurde überprüft, inwiefern auf Basis der Gülleseparation, der anaeroben Stoffumwandlung, der Gärrestnachbehandlung und dem Einsatz (bio)elektrochemischer Verfahren Mitigationstrategien für Antibiotika-Rückstände und Antibiotika-Resistenzgene entwickelt werden können.


3.6.1 Einfluss der Güllelagerung auf Antibiotika und Resistenzgene

Rückstandsverhalten der Leitsubstanzen

Aus zulassungsbegleitenden Untersuchungen für das Umweltbundesamtes ging das Referenzgülle-Konzept zum Testen des Rückstandsverhaltens von Veterinärpharmaka während der Güllelagerung hervor (Kreuzig et al., 2007; 2010b). Hieraus lagen bereits für das Sulfonamid-Antibiotikum Sulfadiazin Kenntnisse zum Rückstandsverhalten während der Lagerung in Rinder- und Schweinegülle vor (Kreuzig und Höltge, 2005; Kreuzig, 2010). Deswegen wurden in Ergänzung hierzu auch Simulationstests zur Lagerung von Schweinegülle aus einem Praxisbetrieb des Untersuchungsgebietes durchgeführt. In Weiterentwicklung der Analysenmethode wurde für beide Ansätze das Extraktionsverfahren von einer Ethylacetat-Extraktion auf die zweistufige Acetonitril-Extraktion kombiniert mit anschließender Ethylacetat-Verteilung umgestellt. Damit konnte das Rückstandsverhalten von ¹⁴C-Sulfadiazin derart weitergehend aufgeklärt werden, als dass die Bildung eines Metaboliten als der wesentliche konzentrationsbestimmende Prozess in der Referenzgülle identifiziert werden konnte. Bei diesem Metaboliten, der auch bei Mohring et al. (2009) und Lamshöft et al. (2007) beschrieben wird, handelt es sich höchstwahrscheinlich um 4-Hydroxy-Sulfadiazin, das dann während der späteren Inkubationsintervalle in die nicht-extrahierbaren Rückstände überführt wird. Dieser Prozess überwiegt in der Betriebsgülle bereits nach 35-tägiger Inkubation (Abb. 2). Durch die nachgeschaltete sequentielle Extraktion konnten bis zu 60 % der nicht-extrahierten Radioaktivität wieder freigesetzt werden. Damit wird verdeutlicht, dass die Bildung nicht-extrahierbarer Rückstände in Gülle kein effektiver Eliminationsprozess sein muss. Denn es ist davon auszugehen, dass Gülle nach Ausbringung im Boden weitestgehend umgebaut wird und damit Nährstoffe und Mikroschadstoffe freigesetzt werden.

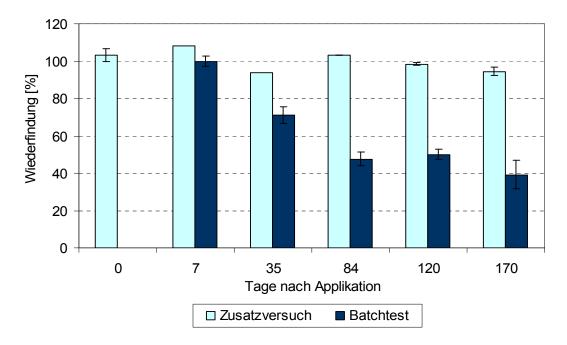


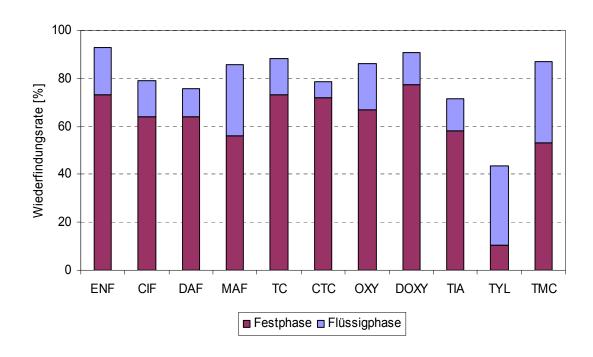
Abb. 2: Simulationstests zur anaeroben Lagerung von Schweinegülle mit ¹⁴C-Sulfadiazin (1 mg/kg TM) über 119 Tage mit Mineralisation (MIN), extrahierbaren Rückstände mit Sulfadiazin (SDZ) und Metabolit 1 (M1) sowie nicht-extrahierbaren Rückständen (NER).

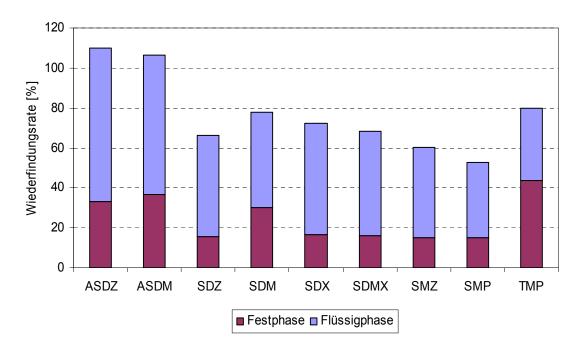
Abb. 3: Simulationstests zur anaeroben Lagerung von Schweinegülle mit ¹⁴C-Enrofloxacin über 119 Tage mit Mineralisation (MIN), extrahierbaren Rückständen (ER) sowie nicht-extrahierbaren Rückständen.

In den Tests mit ¹⁴C-Enrofloxacin zeigt sich der persistente Charakter dieses Fluorchinolon-Antibiotikums in Schweinegülle. Bis 119 Tage nach Applikation liegt Enrofloxacin als unveränderte Ausgangsverbindung in der Fraktion der extrahierbaren Rückstände vor (**Abb. 3**). Gleichzeitig zeigt diese Substanz eine hohe Affinität, nicht-extrahierbare Rückstände zu bilden. Aus dieser Fraktion können mittels sequentieller Extraktion 11 % der anfangs applizierten Radioaktivität als unveränderte Ausgangsverbindung freigesetzt werden.

Abb. 4: Simulationstests zur anaeroben Lagerung von Schweinegülle mit Doxycyclin (50 mg/kg TM) über 170 Tage. Die parallel durchgeführten Zusatzversuche geben zu den einzelnen Inkubationsintervallen die Wiederfindungsraten wieder, während die Batchtests die Konzentrationsabnahme von Doxycyclin zeigen.

Die mit Doxycyclin durchgeführten Tests wurden rückstandsanalytisch begleitet. Deswegen wurden mit Nullproben aus den einzelnen Inkubationsintervallen Zusatzversuche durchgeführt, die die Qualität der Analysenmethode mit Wiederfindungsraten um 100 % belegen. Wie aus **Abb. 4** hervorgeht, nimmt trotz 170-tägiger Inkubation die Ausgangskonzentration von Doxycyclin von 50 mg/kg TM nur auf 20 mg/kg TM ab, so dass auch bei einer Güllelagerung in Keller, Silo oder Lagune bis zu 6 Monaten nicht mit einer vollständigen Elimination ausgegangen werden kann. Bei diesen Laborbatchtests ist allerdings zu berücksichtigen, dass Doxycyclin nicht wie ¹⁴C-Sulfadiazin und ¹⁴C-Enrofloxacin als Radiotracer eingesetzt werden konnte und so eine Bilanzierung des Verbleibs ohne eine mögliche Bestimmung der Mineralisation und der nicht-extrahierbaren Rückstände immer nur unvollständig ist. Deswegen kann diese Konzentrationsabnahme nicht zwangsläufig als Abbau bewertet werden, zumal keine Abbauprodukte detektiert werden konnten. Es ist


eher mit einer Abnahme der Extrahierbarkeit infolge der Bildung nicht-extrahierbarer Doxycyclin-Rückstände aufgrund seiner Affinität zur Feststoffmatrix der Schweinegülle zu rechnen. Bei der Zersetzung der Gülle im Boden käme es dann aber wieder zur Freisetzung der unveränderten Ausgangsverbindung. Die in den Simulationstests zur Güllelagerung erzielten Ergebnisse stehen damit im Einklang mit den positiven Doxycyclin-Nachweisen in den Schweinegülleproben aus den Praxisbetrieben.


Abundanzen von Antibiotika-Resistenzgenen und Integrons

In den Simulationstests zur Güllelagerung mit ¹⁴C-Sulfadiazin und ¹⁴C-Enrofloxacin konnte eine deutliche Zunahme der Abundanzen der Sulfonamid-Resistenzgene *sul1* und *sul2* sowie des Integrasegens *intl1* festgestellt werden (s. Abb. B36-B38). Diese Ergebnisse stimmen mit denen von Heuer et al. (2008) überein, die in ähnlichen Untersuchungen eine Zunahme der relativen Abundanz der Sulfonamid-Resistenzgene *sul1* und *sul2* um mehrere Größenordnungen ermittelten. Die konventionelle Güllelagerung stellt damit kein Güllebehandlungsverfahren dar, das zur gleichzeitigen Verminderung von persistenten Antibiotika und Resistenzgenen sowie Integrons beiträgt. Im Gegenteil könnte die Belastung von Güllen mit Antibiotika-Resistenzgenen und mobilen genetischen Elementen während der Lagerung tendenziell sogar noch ansteigen.

3.6.2 Einfluss der Gülleseparation auf Antibiotika

Die Separation von Schweinegülle gewinnt an Bedeutung, um volumenreduzierte Feststoffe kostengünstiger transportieren oder energieeffizienter in die Biogasanlagen einbringen zu können. Deswegen wurden auch hier Simulationstests durchgeführt, in denen mit den 19 Leitsubstanzen dotierte Schweinegülleproben der Zentrifugation unterzogen und dann die Flüssig- und Festphasen getrennt aufgearbeitet und rückstandsanalytisch untersucht wurden. Die Tetracycline, Fluorchinolone und Makrolide treten mit Ausnahme von Tylosin überwiegend in der Feststoffphase auf (Abb. 5), während die Sulfonamide im Gegensatz zu Trimethoprim überwiegend in der Flüssigphase auftreten. Die Ergebnisse dieser Labortests stehen damit im Einklang mit der Testserie im Praxisbetrieb BGA 8, in dem mit Sulfadiazin (15.0 mg/kg TM) und Doxycyclin (31.0 mg/kg TM) belastete Schweinegülle aus einem Keller mit einem Gülleseparator mit einer Leistung von 15 m³/h getrennt wurde. Auch hier trat Sulfadiazin in Flüssig- und Festphase auf, während Doxycyclin überwiegend in der Festphase gefunden wurde. Auch wenn die Gülleseparation eine Steigerung des Energiebetrages der Schweinegülle als Gärsubstrat bewirken kann, lässt sich hiermit der Eintrag von Antibiotika, insbesondere für Tetracycline, in Biogasanlagen nicht signifikant vermindern.

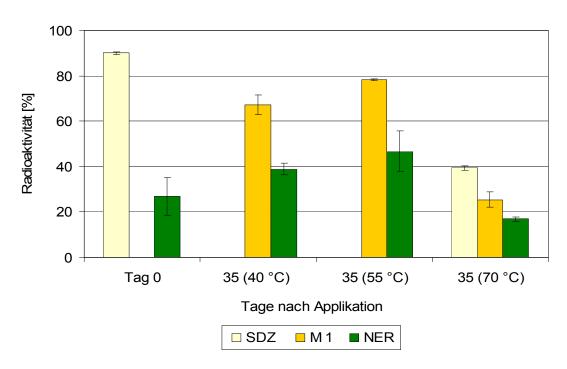
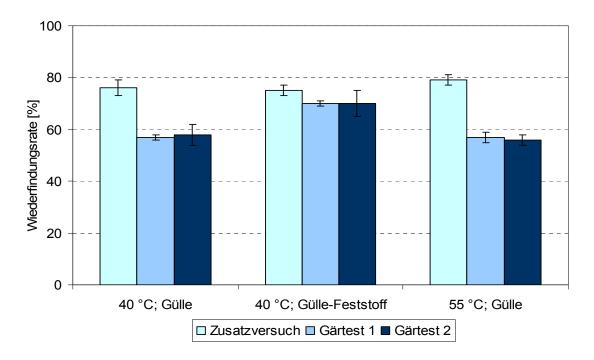

ENF: Enrofloxacin, CIF: Ciprofloxacin, DAF: Danofloxacin, MAF: Marbofloxacin, TC: Tetracyclin, CTC: Chlortetracyclin, OXY: Oxytetracyclin, DOXY: Doxycyclin, TIA: Tiamulin, TYL: Tylosin, TMC: Tilmicosin, LIN: Lincomycin, ASDZ: Acetyl-Sulfadiazin, ASDM: Acetyl-Sulfadimidin, SDZ: Sulfadiazin, SDM: Sulfadimidin, SDX: Sulfadoxin, SDMX: Sulfadimethoxin, SMZ: Sulfamerazin, SMP: Sulfamethoxypyridazin, TMP: Trimethoprim.

Abb. 5: Simulationstests zur Verteilung von Antibiotika während der Separation von Schweinegülle unter Laborbedingungen.

3.6.3 Einfluss der anaeroben Stoffumwandlung auf Antibiotika und Resistenzgene

Rückstandsverhalten der Leitsubstanzen

Die Untersuchungen zum Auftreten von Antibiotika in verschiedenen Biogasanlagen verdeutlichten, dass mit der Schweinegülle eingetragene Antibiotika schließlich in niedrigeren Konzentrationen auch in den Gärresten wiedergefunden werden und damit durch die mesophile anaerobe Stoffumwandlung nicht vollständig eliminiert werden können. Infolge möglicher Verdünnungseffekte durch den Einsatz von Mais als weiteres Gärsubstrat ist eine Bilanzierung des Verbleibs von Antibiotika in einer Biogasanlage allerdings schwierig. Deswegen wurden mesophile (40 °C) und thermophile (55 °C) Gärtests in Laborbatchsystemen für ¹⁴C-Sulfadiazin, ¹⁴C-Enrofloxacin und Doxycyclin in Anlehnung an VDI 4630 (2008) und DIN 38414-8 (1985) durchgeführt, um das Rückstandsverhalten der 3 Leitsubstanzen in der anaeroben Stoffumwandlung unter kontrollierten Laborbedingungen zu untersuchen und damit die in den Biogasanlagen vorgefundenen Rückstandssituationen abzusichern. Zusätzlich wurden für ¹⁴C-Sulfadiazin und ¹⁴C-Enrofloxacin Gärtests auch bei 70 °C durchgeführt, um den Temperatureinfluss auf die anaerobe Stoffumwandlung weitergehend spezifizieren zu können. Die Testserien für ¹⁴C-Sulfadiazin und ¹⁴C-Enrofloxacin wurden bioanalytisch begleitet, um auch die Verminderung von Antibiotika-Resistenzgenen und mobilen genetischen Elementen abschätzen zu können.


Abb. 6: Mesophile bzw. thermophile Laborbatchtests zur anaeroben Stoffumwandlung mit A: ¹⁴C-Sulfadiazin mit Schweinegülle (60 g), Maissilage (5 g) und Fermentermaterial (85 g) als Inokulum zur Simulation der Biogasproduktion in 35 Tagen. Das Verhältnis der organischen Trockenmassen (oTM) der Gärsubstrate zum Inokulum betrug 0.48.

Für ¹⁴C-Sulfadiazin zeigte sich in den 35-tägigen Gärtests bei 40 °C und 55 °C eine Umwandlung der Ausgangsverbindung in den Metaboliten, bei dem es sich ob seines chromatographischen Verhaltens höchstwahrscheinlich um 4-Hydroxy-Sulfadiazin handelt (Lamshöft et al., 2007, Mohring et al., 2009). Diese Umwandlung geht mit einem Anstieg nicht-extrahierbarer ¹⁴C-Sulfadiazin-Rückstände einher (**Abb. 6**). Damit ist Sulfadiazin unter diesen Bedingungen als leicht abbaubar und damit als eliminierbar einzustufen, zumal der gebildete Metabolit eine deutlich geringere antimikrobielle Wirkung zeigt (Mohring et al., 2009). Nichtsdestotrotz konnte Sulfadiazin in einzelnen Gärrestproben eindeutig nachgewiesen werden (s. Kapitel 3.3.2 und 3.4.2). Bei einer Inkubationstemperatur von 70 °C dagegen lagen nach 35 Tagen noch 40 % unverändertes Sulfadiazin vor und die Anteile des Metaboliten und der nicht-extrahierbaren Rückstände waren deutlich vermindert. Damit fördert zwar eine Temperatursteigerung auf 70 °C das Absterben von Bakterien und damit die Abnahme der absoluten Abundanzen aller untersuchten Gene, vermindert aber gleichzeitig die anaerobe Biotransformation von Sulfadiazin. Das Rückstandsverhalten von ¹⁴C-Enrofloxacin ist dagegen nicht temperaturabhängig und wird wiederum maßgeblich durch die Bildung nicht-extrahierbarer Rückstände bestimmt.

Bezüglich der Gärtests mit ¹⁴C-Sulfadiazin und ¹⁴C-Enrofloxacin wurden weitere Tests zu den experimentellen Randbedingungen dieser Simulationstests im Labormaßstab durchgeführt. So wurde zuerst in weiteren mesophilen Gärtests die Konzentration der Radiotracer von 1 bzw. 2 mg/kg TM auf 10 mg/kg TM erhöht, wobei die höhere Konzentration allerdings keinen Einfluss auf das Rückstandsverhalten der beiden Testsubstanzen hatte. In einer weiteren Testserie wurde anstelle von Maissilage als Gärsubstrat Glycerin eingesetzt, ohne allerdings damit einen beschleunigten Abbau der Testsubstanzen erzielen zu können. Schließlich wurde aus ausgewählten Gärtests die nichtextrahierbare Fraktion chemisch weitergehend charakterisiert. Hierzu wurden die mit Acetonitril und Ethylacetat extrahierten Proben ein zweites Mal mit denselben Lösungsmitteln behandelt. Anschließend folgte die Extraktion mit salzsaurem Methanol und die Silylierung mit *N*-Dimethylformamid und Chlortrimethylsilan (Haider et al., 1992, Heise et al., 2006). In Gärtests mit ¹⁴C-Sulfadiazin konnten noch 17 % freigesetzt werden, so dass damit 23 % als gebundene Rückstände angesehen werden können (Klaus et al., 1998). Bei ¹⁴C-Enrofloxacin verblieben 42 % gebundene Rückstände, was die Affinität dieser Testsubstanz zu der Gärrestmatrix unterstreicht.

Ferner wurden Untersuchungen zum Rückstandsverhalten des häufig in Input- und Output-Materialien von Biogasanlagen gefundenen Doxycyclins durchgeführt. Wie aus **Abb. 7** zu ersehen ist, ließen sich im mesophilen und thermophilen Betrieb der Batch-Laborfermenter für Doxycyclin im Vergleich zu den parallel durchgeführten Zusatzversuchen Konzentrationsabnahmen von 20 % feststellen. Die Ergebnisse verdeutlichen aber, dass Doxycyclin auch in der anaeroben Stoffumwandlung persistent ist. Damit stehen die Ergebnisse dieser Labortests wiederum im Einklang mit den Ergebnissen aus den Untersuchungen der Biogasanlagen.

In einem weiteren Test wurden nur Gülle-Feststoffe nach Gülleseparation anstatt der flüssigen Schweinegülle eingesetzt. Dabei wurde ein neueres Gülleaufbereitungs- und Nutzungsverfahren simuliert, bei dem nur die energiereicheren Gülle-Feststoffe in die Biogasanlage eingebracht werden (Kowalewsky, 2009). Im Vergleich zu den Gärtests mit Flüssiggülle fällt die Konzentrationsabnahme allerdings deutlich geringer aus, was auf die höhere Affinität von Doxycyclin zur Festphase als zur Flüssigphase der Schweinegülle zurückzuführen ist.

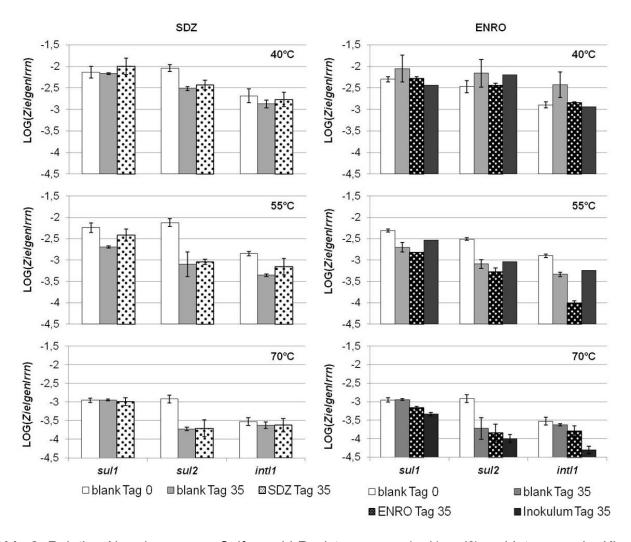


Abb. 7: Mesophile bzw. thermophile Laborbatchtests zur anaeroben Stoffumwandlung mit Doxycyclin (20 mg/kg TM), Schweinegülle bzw. Feststoffphase nach Gülleseparation (60 g), Maissilage (5 g) und Fermentermaterial (85 g) zur Simulation der Biogasproduktion in 35 Tagen. Das Verhältnis der organischen Trockenmassen (oTM) der Gärsubstrate zum Inokulum betrug 0.49 bzw. 0.51. Die parallel durchgeführten Zusatzversuche geben zu den einzelnen Inkubationsintervallen die Wiederfindungsraten wider, während die Batchtests die Konzentrationsabnahme von Doxycyclin zeigen.

Abundanzen von Resistenzgenen, Integrons und bakterielle Gemeinschaften

Die Ergebnisse der Gärtests verdeutlichen den Einfluss der Temperatur während der Fermentation auf die Abundanz der Gene *sul1*, *sul2* und *intl1* sowie auf die Zusammensetzung der bakteriellen Gemeinschaft. Während in keinem der mesophil (40 °C) betriebenen Batchtests eine Reduktion von *sul1*, *sul2* und *intl1* auftrat, konnte im Gegensatz hierzu in allen thermophil (55 °C) betriebenen Ansätzen für alle drei Gene eine Abnahme der Abundanz beobachtet werden (**Abb. 8**) (s. Abb. B41-B43). Ähnliche Ergebnisse für *intl1* und diverse Tetracyclin-Resistenzgene wurden von Diehl und Lapara (2010) berichtet. Wurden die Batchtests bei 70 °C (extrem thermophil) betrieben, so

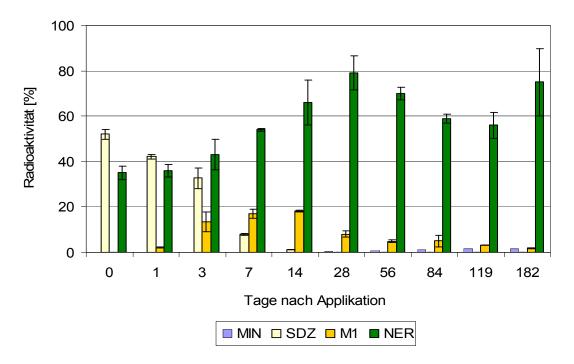
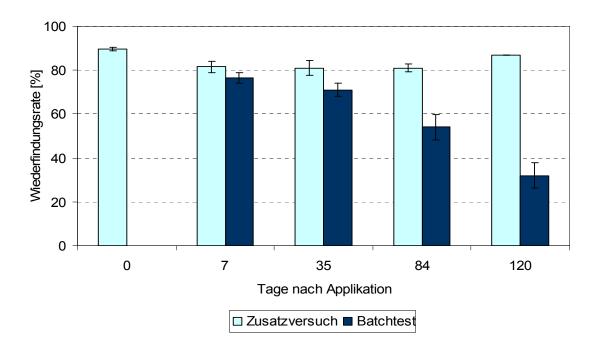

nahm die absolute Abundanz aller untersuchten Gene im Laufe des Versuches deutlich ab. Auffällig hierbei war, dass die Abnahme der Gene *rrn*, *sul1* und *intl1* in gleichem Maße (jeweils um ca. eine Größenordnung) stattfand (s. Abb. B47), was auf ein Absterben der betreffenden Bakterien bei dieser hohen Temperatur hinweist. Lediglich für das Resistenzgen *sul2* konnte sowohl eine deutliche Abnahme der relativen als auch der absoluten Abundanz bei der extrem thermophilen Behandlung beobachtet werden (s. Abb. B46-B47). Die beschriebenen Effekte traten jeweils unabhängig vom Einsatz der Antibiotika Enrofloxacin und Sulfadiazin auf.

Abb. 8: Relative Abundanzen von Sulfonamid-Resistenzgenen (*sul1*, *sul2*) und Integrons der Klasse 1 (*intl1*) bezogen auf Anzahl 16S RNA-Genkopien (*rrn*) unter Einfluss unterschiedlicher Fermentationstemperaturen (40°C = mesophil, 55°C = thermophil, 70°C = extrem thermophil) und Antibiotika (SDZ = Sulfadiazin, ENRO= Enrofloxacin) vor und nach 35-tägiger Inkubation.

Auch anhand der DGGE-Analyse konnte gezeigt werden, dass die Temperatur während der Fermentation maßgeblichen Einfluss auf die Zusammensetzung der bakteriellen Gemeinschaft hat. So clusterten die Proben, die bei gleicher Temperatur behandelt wurden, bei der Auswertung der

Bandenmuster mittels der GelComparII-software zusammen, während keine Aufteilung der Antibiotika-dotierten und nicht dotierten Ansätze auftrat (s. Abb. B44-B45, Abb. B48-B49). Aus den gewonnenen Ergebnissen lässt sich schlussfolgern, dass das Mitigationspotential anaerober Fermentation in Bezug auf ARGs und MGEs in besonderem Maße von der Fermentationstemperatur abhängt. Bei dem Temperaturanstieg von 55 °C auf 70 °C lassen sich die Abundanzen von ARGs und MGEs reduzieren. Neben diesem positiven Effekt vermindert sich allerdings die anaerobe Biotransformation von Sulfadizin, was durch die reduzierte Bildung des Sulfadiazin-Metaboliten und der nicht-extrahierbarer Sulfadiazin-Rückstände angezeigt wird.


Abb. 9: Simulationstests zur anaeroben Lagerung von Gärresten mit ¹⁴C-Sulfadiazin (1 mg/kg TM) über 182 Tagen mit Mineralisation (MIN), extrahierbaren Rückständen mit Sulfadiazin (SDZ) und Metabolit 1 (M1) sowie nicht-extrahierbaren Rückständen (NER).

3.6.4 Einfluss der Gärrestlagerung auf Antibiotika

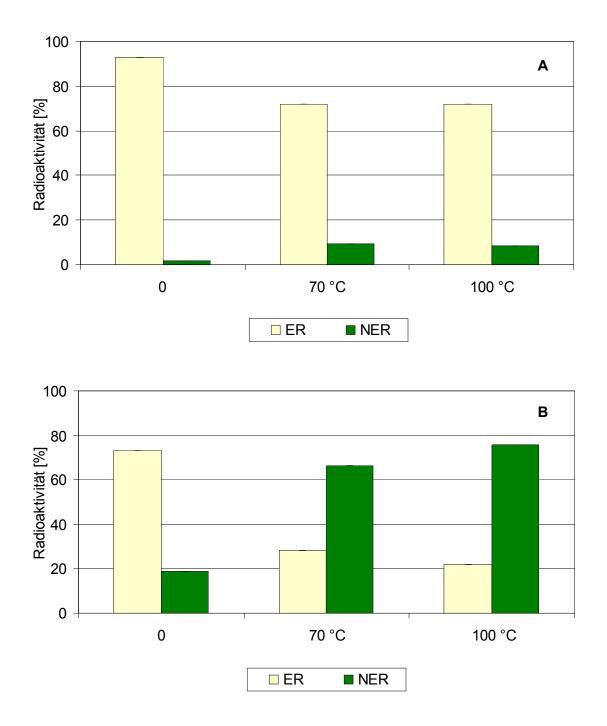
Da in Gärresten aus verschiedenen Praxisbetrieben sowie aus Labor-Gärtests Antibiotika-Rückstände nachgewiesen wurden, schlossen sich Simulationstests zur Lagerung von Gärresten an, um unter diesen Testbedingungen den Beitrag der anaeroben Biotransformation auf die Verminderung der Antibiotika-Konzentrationen beurteilen zu können. Die Ergebnisse dieser Simulationstests für ¹⁴C-Sulfadiazin unterscheiden sich von den Simulationstests zur Güllelagerung dadurch, dass hier eine schnellere und verstärkte Bildung nicht-extrahierbarer Sulfadiazin-Rückstände zu verzeichnen ist. Da dieses gleich zu Testbeginn, einem Zeitpunkt, zu dem der Sulfadiazin-Metabolit

noch eine untergeordnete Rolle spielt, erfolgt, ist davon auszugehen, dass direkt die unveränderte Ausgangsverbindung in die nicht-extrahierbare Fraktion überführt wird. Tritt so Sulfadiazin nicht nur in der Gülle, sondern auch im Fermenter- und Nachgärermaterial sowie in den Gärresten einer Biogasanlage zu einem bestimmten Zeitpunkt auf und lässt sich danach nicht mehr nachweisen, ist damit nicht zwangsläufig auf Elimination durch Abbau zu schließen. Mit zunehmender Inkubationszeit überwiegt dann die nicht-extrahierbare Fraktion. Im Gegensatz zu den Simulationstests zur Güllelagerung erreicht am Ende dieser Testserie die Mineralisation als effektivsten Eliminationsprozess von Mikroschadstoffen 1.7 % der anfangs mit dem Radiotracer applizierten Radioaktivität (Abb. 9).

Für Enrofloxacin ergeben sich in der 119-tägigen Testserie zur Gärrestlagerung keine relevanten Unterschiede zur Güllelagerung. Große Teile der applizierten Ausgangsverbindung liegen unverändert in der extrahierbaren oder nicht-extrahierbaren Fraktion vor, so dass auch hier nicht von einer vollständigen Elimination dieses Fluorchinolon-Antibiotikums durch anaerobe Lagerung ausgegangen werden kann.

Abb. 10: Simulationstests zur anaeroben Lagerung von Gärresten mit Doxycyclin (20 mg/kg TM) über 120 Tage. Die parallel durchgeführten Zusatzversuche geben zu den einzelnen Inkubationsintervallen die Wiederfindungsraten wider, während die Batchtests die Konzentrationsabnahme von Doxycyclin zeigen.

In den 120-tägigen Simulationstests zur Lagerung von Gärrest zeigt auch Doxycyclin ein weitgehend übereinstimmendes Rückstandsverhalten wie während der Güllelagerung. In beiden Testse-


rien lässt sich Doxycyclin nicht eliminieren (**Abb. 10**). Die auch hier festgestellte Konzentrationsabnahme lässt nicht zwangsläufig auf Abbauprozesse, sondern eher auf eine Festlegung in der komplexen Feststoffmatrix der Gärreste schließen (s. auch Kapitel 3.6.5).

Damit zeichnet sich ab, dass als persistent einzustufende Antibiotika durch anaerobe Prozesse während der Lagerung von Güllen und Gärresten sowie im Fermentationsprozess zur Biogasproduktion nicht vollständig eliminiert werden können. Die Anregung von Gans et al. (2010), Gärreste mindestens 100 Tage vor der Ausbringung zu lagern, können somit die Einträge dieser Antibiotika in Böden nur sehr begrenzt minimieren.

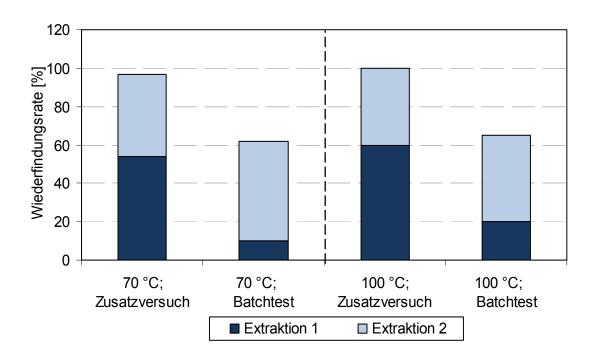
3.6.5 Einfluss der Nachbehandlung von Gärresten auf Antibiotika

Aerobe Nachbehandlung von Gärresten

Da sich das Fluorchinolon-Antibiotikum Enrofloxacin in den Simulationstests zur Gärrestlagerung als persistent erwies, wurde unter Verwendung eines Durchflusssystems untersucht, inwiefern eine 10-tägigen Belüftung (1 L/h) von Gärresten zu einer aeroben Biotransformation der applizierten Leitsubstanz führen kann. Dabei kam es für ¹⁴C-Enrofloxacin zu einer geringfügigen Intensitätsverschiebung in den extrahierbaren Fraktionen von 69 % auf 42 %, wogegen die nicht-extrahierbaren Rückstände von 27 % auf 54 % anstiegen. Damit zeigt sich, dass auch durch eine aerobe Nachbehandlung persistente Antibiotika nicht eliminiert werden können. Ferner wäre eine aerobe Nachbehandlung unweigerlich mit einem hohen Energieverbrauch für die Belüftung und mit beträchtlichen Emissionen verbunden, woraus für ein solches Nachbehandlungsverfahren eine negative Wirtschaftlichkeitsbetrachtung resultierte.

Abb. 11: Simulationstests mit A: ¹⁴C-Sulfadiazin und B: ¹⁴C-Enrofloxacin zur thermischen Nachbehandlung von Gärresten. ER: Extrahierbare Rückstände, NER: Nicht-extrahierbare Rückstände.

Thermische Nachbehandlung von Gärresten


In einigen landwirtschaftlichen Betrieben werden die Gärreste nicht direkt als flüssige Wirtschaftsdünger ausgebracht, sondern nach Gärrestseparation getrocknet (VDI 4631, 2011, LfL, 2012, Leitfaden Biogas, 2013), um damit Transportvolumina und Transportkosten zu reduzieren. Hierzu werden die Feststoffe der Gärreste mittels Bandtrocknern bei 70 °C getrocknet. Für die Simulationstests zur thermischen Nachbehandlung wurden deswegen Gärreste zur Separation zentrifu-

giert. Die Festphasen wurden mit ¹⁴C-Sulfadiazin bzw. ¹⁴C-Enrofloxacin dotiert und in einem Durchflusssystem im Luftstrom bei 70 °C und 100 °C über 15 h bzw. 7 h getrocknet. Die getrockneten Rückstände wurden anschließend extrahiert und radiotraceranalytisch untersucht.

Die Trocknung bei 70 ° C und bei 100 °C hat auf das Rückstandsverhalten von ¹⁴C-Sulfadiazin nur einen sehr geringen Einfluss (**Abb. 11**). So liegen die Rückstände auch nach der Behandlung überwiegend in der extrahierbaren Fraktion vor. Wie das Metaboliten-Screening eindeutig belegt, kann hier ausschließlich die applizierte Ausgangsverbindung nachgewiesen werden. Der in allen Tests zur anaeroben Biotransformation detektierte Metabolit tritt hier nicht auf. Auch die gebildeten nicht-extrahierbaren Rückstände sind mit 10 % der mit dem Radiotracer applizierten Radioaktivität von untergeordneter Bedeutung. Hieraus ist eindeutig zu erkennen, dass die Bildung des Sulfadiazin-Metaboliten sowie der nicht-extrahierbaren Rückstände ausschließlich auf biotische Abbauprozesse zurückzuführen sind.

In den Tests mit ¹⁴C-Enrofloxacin erfolgt mit zunehmender Temperatur eine verstärkte Verschiebung in die nicht-extrahierbare Fraktion. Da in den Extrakten ebenfalls keine Bildung von Transformationsprodukten nachgewiesen werden konnte, scheint durch den Trocknungsprozess die Ausgangsverbindung so stark in der Gärrestematrix festgelegt zu werden, dass sie sich einer konventionellen Lösungsmittelextraktion entzieht. Da Gärreste in Böden aber mit der Zeit einer Umsetzung bzw. einem Abbau unterliegen, muss dann langfristig allerdings wieder mit einer Freisetzung von Enrofloxacin gerechnet werden. Somit können Sulfadiazin- und Enrofloxacin-Rückstände auch durch die thermische Nachbehandlung von Gärresten nicht eliminiert werden.

Für Doxycyclin ergibt sich eine ähnliche Rückstandssituation. Wie aus Abb. 12 hervorgeht, kann auch dieses Tetracyclin-Antibiotikum durch die Trocknung bei 70 °C und 100 °C nicht aus den Gärresten entfernt werden. Im Vergleich zu den parallel durchgeführten Zusatzversuchen können zwar nach dem ersten Extraktionsschritt geringfügige Konzentrationsabnahmen festgestellt werden. Doch wird mit der zweiten Extraktion mit salzsaurem Methanol belegt, dass Doxycyclin-Rückstände aus der Feststoffmatrix mit dem harscheren Extraktionsmittel als unveränderte Ausgangsverbindung freigesetzt werden können. Die in den einzelnen Testserien für Doxycyclin festgestellten Konzentrationsabnahmen sind damit eher auf eine Festlegung in der Matrix von Gülle-, Fermenter- und Gärrestproben als auf Abbaureaktionen zurückzuführen. Da Schweinegülle und Gärreste nach Ausbringung auf landwirtschaftlich genutzte Böden weitgehend umgewandelt werden, um die Freisetzung organisch gebundener Nährstoffe und damit die eigentliche Düngewirkung zu erzielen, kann auch die Remobilisierung von Doxycyclin nicht ausgeschlossen werden.

Abb. 12: Simulationstests zur Gärresttrocknung bei 70 °C und 100 °C mit Doxycyclin (20 mg/kg TM). Die parallel durchgeführten Zusatzversuche geben zu den einzelnen Inkubationsintervallen die Wiederfindungsraten wider, während die Batchtests die Konzentrationsabnahme von Doxycyclin zeigen.

3.6.6 Einfluss (bio)elektrochemischer Verfahren auf Antibiotika

Auch in der kommunalen Abwasserbehandlung stellen Mikroschadstoffe heute noch ein Problem da. So steht hier unter anderem der Einsatz (bio)elektrochemischer Verfahren im Fokus aktueller Forschungsaktivitäten (Martínez-Huitle und Ferro, 2005), um diese Mikroschadstoffe in "Electrochemical Advanced Oxidation Processes" möglichst zur Kohlenstoffdioxid und Wasser zu mineralisieren. In einem dieser Verfahren wird die Bor-dotierte Diamantelektode (BDDE) angewendet, bei der in-situ Hydroxyl-Radikale als starkes Oxidationsmittel erzeugt werden (Guinea et al., 2010). In den mit ¹⁴C-Sulfadiazin und ¹⁴C-Enrofloxacin durchgeführten Tests wurde die Flüssigphase nach Gülleseparation eingesetzt, um den leicht abbaubaren Kohlenstoff-Anteil in diesen Abbautests zu reduzieren. Nach 18-stündiger Versuchsdauer lagen noch 50 % bzw. 59 % als ¹⁴C-Sulfadiazin-und ¹⁴C-Enrofloxacin-Rückstände vor, wogegen nur 6 % bzw. 7 % der Leitsubstanzen zu ¹⁴C-Kohlenstoffdioxid oxidiert werden konnten. In diesen Tests traten Substanzverluste von 44 % bzw. 34 % auf, die eventuell auf die Reduktion von Kohlenstoffdioxid an der Platin-Kathode zu Kohlenstoffmonoxid zurückgeführt werden können (Smolinka et al., 2005), welches mittels Gaschromatographie mit Wärmeleitfähigkeitsdetektor auch eindeutig nachgewiesen werden konnte. Dieses lässt sich in den dem Probengefäß nachgeschalteten, mit Kaliumhydroxid-Lösung gefüllten Fallen aller-

dings nicht zurückhalten. Diese Ergebnisse zeigen, dass die im Rahmen dieses Forschungsvorhabens begonnene Entwicklung des BDDE-Labortestsystems noch einer Weiterentwicklung bedarf, um die in einem solch komplexen System auftretenden Abbauwege der Leitsubstanzen aufklären zu können.

Ähnliche Randbedingungen ergaben sich für die Experimente mit der Biobrennstoffzelle, die bisher im Labormaßstab für Tests zur Abbaubarkeit ausgewählter Sulfonamide und Fluorchinolone in artifiziellem und realem Abwasser eingesetzt wurde. Auch wenn sich hier bereits viel versprechende Ergebnisse, die deutliche Konzentrationsabnahmen von Sulfamethoxazol (99 %), Sulfadiazin (31 %) und Enrofloxacin (64 %) zeigten, ergaben, sind auch hier die substanzspezifischen Abbauwege noch nicht aufgeklärt. Darüber hinaus ist das experimentelle Design beider Behandlungsverfahren noch nicht soweit ausgereift, dass so komplexe Probenmatrices wie Schweinegüllen und Gärreste untersucht werden können.

4. Voraussichtlicher Nutzen und Verwertbarkeit der Ergebnisse

Dieses an der Schnittstelle von angewandter Forschung und Grundlagenforschung positionierte Forschungsvorhaben wurde zur Unterstützung des Entscheidungshilfebedarfes des Bundesministeriums für Ernährung, Landwirtschaft und Verbraucherschutz von November 2011 bis Juli 2014 durchgeführt. Mit der Screening-Studie in ausgewählten Schweinemast- und Schweinezuchtbetrieben mit konventionellem Güllemanagement sowie in Schweinezuchtbetrieben mit hofeigenen Biogasanlagen in Niedersachsen liegen nun Daten vor, die einen Zusammenhang zwischen den betriebsspezifischen Antibiotika-Anwendungsmustern und dem Auftreten von Antibiotika-Rückständen sowie Antibiotika-Resistenzgenen und mobilen genetischen Elementen in teilweise hohen Konzentrationen bzw. Abundanzen in Schweinegüllen bis zu den Gärresten aufzeigen. Anhand der vorliegenden Rückstandsdaten aus den Praxisbetrieben und den durchgeführten Laborexperimenten zeichnet sich ab, dass es augenblicklich keine praxisrelevanten Strategien für Güllebehandlungsverfahren zur Verminderung von Antibiotika-Rückständen und Antibiotika-Resistenzgenen gibt. Deswegen ist es angezeigt, in ausgewählten Betrieben den Pfad von Antibiotika aus Schweinegüllen und Gärresten bis zu Boden-Pflanzen-Systemen weiterzuverfolgen, um somit erstmals ein Gesamtbild zur Antibiotika-Belastung auf Betriebsebene aufnehmen zu können. Da in diesem Forschungsvorhaben in Ermangelung umfassender rückstandsanalytischer Methodenkataloge nicht alle angewendeten Antibiotika in diese Untersuchungen einbezogen werden konnten, sind Forschungsaktivitäten zur Weiterentwicklung analytischer Nachweismethoden zu initiieren. Ferner sollte auch auf das Zulassungsverfahren für Veterinärpharmaka Einfluss genommen werden, damit die Hersteller für die neuen Präparate auch Analysenmethoden für den Nachweis in Gülle, Boden und Pflanzen liefern, so dass diese Bestandteil der Zulassung werden, wie es bereits seit Jahrzehnten in der Pflanzenschutzmittelzulassung praktiziert wird. Ferner sollten die vorliegenden Ergebnisse in die Beratung von Schweinemast- und Schweinezuchtbetrieben einbezogen werden, um in Zusammenarbeit mit Beratern, Landwirten und Tierärzten das Optimierungspotential der konventionellen Schweinehaltungssysteme zu überprüfen, inwieweit der Einsatz von Antibiotika vermindert werden kann.

5. Zusammenfassung

Die im Rahmen dieses Forschungsvorhabens, das zur Erfüllung des Entscheidungshilfebedarfes des Bundesministeriums für Ernährung, Landwirtschaft und Verbraucherschutz von November 2011 bis Juli 2014 bearbeitet wurde, durchgeführte Screening-Studie in Schweinemast- und Schweinezuchtbetrieben in Niedersachsen belegt, dass die Antibiotika in Schweinegülle nachgewiesen werden können, die vermehrt an größere Tiergruppen über Futter und Wasser verabreicht werden. Entsprechend der Anwendungsmuster treten dabei insbesondere für Tetracycline Konzentrationen >200 mg/kg TM Schweinegülle auf. An Einzeltiere verabreichte Antibiotika können infolge von auftretenden Verdünnungseffekten oftmals nicht nachgewiesen werden. Die Untersuchungen der Betriebe mit Biogasanlagen geben einen Überblick über den Verbleib von mit Schweinegülle als Gärsubstrat eingetragene Antibiotika bei der Passage von Fermenter bis Endlager. Insgesamt zeichnet sich ab, dass eingetragene Antibiotika durch die anaerobe Stoffumwandlung in Biogasanlagen nicht vollständig eliminiert werden. Das gilt auch für Antibiotika-Resistenzgene und mobile genetische Elemente, die in allen Schweinegülleproben teilweise in sehr hohen Abundanzen nachgewiesen werden. Über Fermenter- und Nachgärermaterialien nehmen diese zwar ab, steigen in den Gärresten aber wieder annähernd auf das Niveau der Schweinegüllen an. Abnahmen von Antibiotika-Rückständen sowie Resistenzgen-Abundanzen sind dabei ggf. nur auf Verdünnungseffekte durch nicht belastete Gärsubstrate, wie z.B. Maissilage, zurückzuführen. Damit lässt sich konstatieren, dass die anaerobe Stoffumwandlung in Biogasanlagen eine vollständige Elimination von Antibiotika und Antibiotika-Resistenzgenen nicht sicherstellen kann. Bei der Verwendung von belasteten Schweinegüllen und Gärresten als Dünger auf landwirtschaftlich genutzten Böden besteht damit die Möglichkeit eines Resistenztransfers auf die bakterielle Bodengemeinschaft. Letzteres ist von besonderer Bedeutung, da ein Austausch von Resistenzgenen zwischen Bodenbakterien und klinischen Pathogenen bereits nachgewiesen wurde.

Die in den Praxisbetrieben ermittelten Belastungen der Schweinegüllen bis zu den Gärresten konnten anhand des in Labortests zur Simulation der Güllelagerung und Gülleseparation, der anaeroben Stoffumwandlung, der Gärrestlagerung und Gärrestnachbehandlung sowie (bio)elektrochemischer Methoden zur Behandlung wässeriger Gülle- bzw. Gärrestfraktionen festgestellten Rückstandsverhaltens ausgewählter Antibiotika bestätigt werden. Sie zeigen aber auch, dass sich durch konventionelle und alternative Güllebehandlungsverfahren keine Verminderungsstrategien abzeichnen. Die effektivste Strategie zur Verminderung von Antibiotika-Rückständen und Resistenzgen-Abundanzen kann sich damit nur auf die Optimierung der konventionellen Schweinehaltung mit einem verminderten Einsatz von Antibiotika konzentrieren.

6. Gegenüberstellung der ursprünglich geplanten zu den tatsächlich erreichten Zielen

Das im Forschungsantrag vom 18.02.2011 aufgestellte Arbeitsprogramm konnte mit wenigen ergebnisorientiert vorgenommenen Änderungen bis Juli 2014 erfolgreich umgesetzt werden. Da die an diesem Forschungsvorhaben mitwirkenden landwirtschaftlichen Betriebe frühzeitig zum Vorhabenbeginn gefunden werden konnten, konnte sich die breit angelegte Probenahme für die rückstandsanalytische Bestandsaufnahme auf Frühjahr und Herbst 2012 sowie Frühjahr 2013 konzentrieren, um dann 2 Betriebe mit hofeigenen Biogasanlagen als "Versuchsbetriebe" bis Frühjahr 2014 detaillierter zu untersuchen. Die rückstandsanalytischen Untersuchungen aller Proben konzentrierte sich auf 21 ausgewählte Leitsubstanzen der Wirkstoffklassen der Diaminopyrimidine (Trimethoprim), Sulfonamide (Sulfadiazin, Acetyl-sulfadiazin, Sulfamerazin, Acetyl-sulfadimidin, Sulfadimidin, Sulfamethoxypyridazin, Sulfadoxin, Sulfadimethoxin), Tetracycline (Oxytetracyclin, Tetracyclin, Chlortetracyclin, Doxycyclin), Fluorochinolone (Marbofloxacin, Ciprofloxacin, Danofloxacin, Enrofloxacin, Orbifloxacin, Difloxacin), Makrolide (Tylosin) und Pleuromutiline (Tiamulin). In Ermangelung für Gülle bis Gärrest anwendbarer Analysenmethoden konnten verschiedene Makrolide, β-Laktame, Aminoglykoside und Polymyxine nicht in die Untersuchungen einbezogen werden. Im Rahmen der bioanalytischen Untersuchungen wurden alle Praxisgüllen sowie alle Proben aus Biogasanlagen aus den Probenahmen Herbst 2011, Frühjahr 2012 und Herbst 2012 bearbeitet. Im Herbst 2012 wurde der Nachweis von ARGs und MGEs mittels konventioneller PCR und anschließender Southern Blot-Hybridisierung bezüglich der Proben aus Biogasanlagen auf die Gärreste fokussiert, da diese Methodik trotz ihrer hohen Sensitivität und Spezifität lediglich semiguantitative Ergebnisse liefert. Ungeachtet dessen wurden bei der Analyse mittels quantitativer real-time-PCR alle Prozessierungsstufen einbezogen.

Da die Ergebnisse dieser drei Probenahmen bereits eine teils hohe Belastung der Güllen und Gärreste mit ARGs und MGEs aufzeigten, konzentrierten sich die weiterführenden Untersuchungen auf die Analyse der Übertragbarkeit von Antibiotika-Resistenzen aus Gärresten mittels exogener Plasmidisolierung und anschließender Charakterisierung gefischter Plasmide. Der ausschließlich DNA-basierte Nachweis von Sequenzen, die spezifisch für ARGs und MGEs sind, erlaubt noch keine Aussagen über deren Funktionalität oder tatsächliche Transferierbarkeit. Stattdessen kann es sich sowohl um Relikte abgestorbener Bakterien handeln als auch um Gene, die in ihren Wirten nicht exprimiert werden können, oder um Gene, die in inaktiven Wirtsbakterien vorliegen. Mittels exogener Plasmidisolierung können hingegen nur funktionsfähige Plasmide aus lebenden Bakterien der Proben gefischt werden, die tatsächlich ihre Antibiotika-Resistenzen übertragen.

Die im Antrag angedachten Laborexperimente zur Überprüfung, ob Strategien für Güllebehandlungsverfahren zur gleichzeitigen Verminderung von Antibiotika-Rückständen und Antibiotika-Resistenzgenen entwickelt werden können, wurden nicht nur im geplanten Umfang umgesetzt, sondern um Untersuchungen des oft in den Praxisbetrieben angewendeten und in Gülle- bis Gärrestproben wiedergefundenen Tetracyclin-Antibiotikums Doxycyclin erweitert, ohne allerdings praxistaugliche Behandlungsverfahren identifizieren zu können. Somit bleibt nur, am Antibiotika-Einsatz als der Quelle der Belastung von Schweinegüllen mit Antibiotika-Rückständen und Antibiotika-Resistenzgenen anzusetzen.

7. Literaturverzeichnis

- Asam, Z., Poulsen, T.G., Nizami, A-S., Rafique, R., Kiely, G. (2011): How can we improve biomethane production per unit feedstock in biogas plants? Appl. Energ., 88, 2013-2018.
- Bahl, M.I., Burmolle, M., Meisner, A., Hansen, L.H., Sorensen, S.J. (2009): All IncP-1 plasmid subgroups, including the novel ε subgroup, are prevalent in the influent of a Danish wastewater treatment plant. Plasmid, 62, 134-139.
- Barraud, O., Baclet, C., Denis, F., Ploy, M.C. (2010): Quantitative multiplex real-time PCR for detecting class 1, 2 and 3 integrons. J. Antimicrob. Chemother., 65, 1642-1645.
- Bartha, N.A., Soki, J., Urban, E., Nagy, E. (2011): Investigation of the prevalence of *tetQ*, *tetX* and *tetX1* genes in *Bacteroides* strains with elevated tigecycline minimum inhibitory concentrations. Int. J. Antimicrob. Agents, 38, 522-525.
- Bernet, N., Béline, F. (2009): Challenges and innovations on biological treatment of livestock effluents. Bioresour. Technol., 100, 5431-5436.
- Binh, C.T.T., Heuer, H., Kaupenjohann, M., Smalla, K. (2008): Piggery manure used for soil fertilization is a reservoir for transferable antibiotic resistance plasmids. FEMS Microbiol. Ecol., 66, 25-37.
- Bundesinstitut für Verbraucherschutz und Lebensmittelsicherheit (2014): Zweite Datenerhebung zur Abgabe von Antibiotika in der Tiermedizin. http://www.bvl.bund.de (Zugriff: 06.06.2014).
- Chen, Y., Cheng, J.J., Creamer, K.S. (2008): Inhibition of anaerobic digestion process: A review. Bioresour. Technol., 99, 4044-4064.
- Chen, Y.S., Zhang, H.B., Lou, Y.M., Song, J. (2012): Occurrence and assessment of veterinary antibiotics in swine manures: A case study in East China. Chinese Sci. Bull., 57, 606-614.
- Chuanchen, R., Khemtong, S., Padungtod, P. (2007): Occurrence of *qacE/qacE∆1* genes and their correlation with class 1 integrons in *Salmonella enterica* isolates from poultry and swine. Southeast Asian J. Trop. Med. Public Health, 38, 855-862.
- Diehl, D.L., Lapara, T.M. (2010): Effect of temperature on the fate of genes encoding tetracycline resistance and the integrase of class 1 integrons within anaerobic and aerobic digesters treating municipal wastewater solids. Environ. Sci. Technol., 44, 9128-9133.
- DIN 38414 Teil 8 (1985): Schlamm und Sedimente (Gruppe S), Bestimmung des Faulverhaltens.
- Du, L., Liu, W. (2012): Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems. A review. Agron. Sustain. Dev., 32, 309-327.
- Fernández, C., Alonso, C., Babín, M.M., Pro, J., Carbonell, G., Tarazona, J.V. (2004): Ecotoxicological assessment of doxycycline in aged pig manure using multispecies soil systems. Sci. Total Environ., 323, 63-69.
- Forsberg, K.J., Reyes, A., Wang, B., Selleck, E.M., Sommer, M.O.A., Dantas, G. (2012): The shared antibiotic resistome of soil bacteria and human pathogens. Science, 337, 1107-1111.

- Freitag, M., Yolcu, D.H., Hayen, H., Betsche, T., Grote, M. (2008): Screening zum Antibiotika-Transfer aus dem Boden in Getreide in Regionen Nordrhein-Westfalens mit großen Viehbeständen. J. Verbr. Lebensm., 3, 174-184.
- Gans, O., Weiss, S., Sitka, A., Pfundtner, E., Scheffknecht, C., Scharf, S. (2008): Determination of selected veterinary antibiotics and quaternary ammonium compounds in digestates of biogas plants in Austria. Proceedings of the international congress CODIS 2008, Compost and digestate: sustainability, benefits, impacts for the environment and for plant production, 67-71.
- Gans, O., Pfundtner, E., Winckler, Ch., Bauer, A. (2010): Antibiotika in Biogasanlagen. Umwelt-bundesamt Wien, Austria, Report REP-0287, ISBN 978-3-99004-088-1, 1-48.
- Götz, A., Pukall, R., Tietze, E., Prager, R., Tschäpe, H., van Elsass, J.D., Smalla, K. (1996): Detection and characterization of broad-host-range plasmids in environmental bacteria by PCR. Appl. Environ. Microbiol., 62, 2621-2628.
- Goldstein, C., Lee, M.D., Sanchez, S., Hudson, C., Phillips, B., Register, B., Grady, M., Liebert, C., Summers, A.O., White, D.G., Maurer, J.J. (2001): Incidence of class 1 and 2 integrases in clinical and commensal bacteria from livestock, companion animals, and exotics. Antimicrob. Agents Chemother., 45, 723-726.
- Grote, M., Schwake-Anduschus, C., Michel, R., Stevens, H., Heyser, W., Langenkämpfer, G., Betsche, T., Freitag, M. (2007): Incorporation of veterinary antibiotics into crop from manured soil. Landbauforschung Völkenrode, 57, 25-32.
- Guinea, E., Garrido, J.A., Rodríguez, R.M., Cabot, P.-L, Arias, C., Centellas, F., Brillas, E. (2010): Degradation of the fluoroquinolone enrofloxacin by electrochemical advanced oxidation processes based on hydrogen peroxide electrogeneration. Electrochim. Acta, 55, 2101-2115.
- Haider, K., Spiteller, M., Reichert, K., Fild, M., (1992): Derivatization of humic compounds: an analytical approach for bound organic residues. Int. J. Environ. Chem. 46, 201–211.
- Hamscher, G., Pawelzick, H.T., Höper, H., Nau, H. (2005): Different behavior of tetracyclines and sulfonamides in sandy soils after repeated fertilization with liquid manure. Environ. Toxicol. Chem., 24, 861-868.
- Heise, J., Höltge, S., Schrader, S., Kreuzig, R. (2006): Chemical and biological characterization of non-extractable sulfonamide residues in soil. Chemosphere, 65, 2352-2357.
- Heuer, H., Binh, C.T.T., Jechalke, S., Kopmann, C., Zimmerling, U., Krögerrecklenfort, E., Ledger, T., González, B., Top, E., Smalla, K. (2012): IncP-1ε plasmids are important vectors of antibiotic resistance genes in agricultural systems: diversification driven by class 1 integron gene cassettes. Front. Microbiol., 3, 2.
- Heuer, H., Focks, A., Lamshöft, M., Smalla, K., Matthies, M., Spiteller, M. (2008): Fate of sulfadiazine administered to pigs and its quantitative effect on the dynamics of bacterial resistance genes in manure and manured soil. Soil Biol. Biochem., 40, 1892-1900.

- Heuer, H., Kopmann, C., Binh, C.T.T., Top, E., Smalla, K. (2009): Spreading antibiotic resistance through spread manure: characteristics of a novel plasmid type with low % G+C content. Environ. Microbiol., 11, 937-949.
- Heuer, H., Smalla, K. (2007): Manure and sulfadiazine synergistically increased bacterial antibiotic resistance in soil over at least two months. Environ, Microbiol., 9, 657-666.
- Heuer, H., Solehati, Q., Zimmerling, U., Kleineidam, K., Schloter, M., Müller, T., Focks, A., Thiele-Bruhn, S., Smalla, K. (2011): Accumulation of sulfonamide resistance genes in arable soils due to repeated application of manure containing sulfadiazine. Appl. Environ. Microbiol., 77, 2527-2530.
- Hoeksma, P., Ognk, N.W.M., Eriks, P.J.L., Groot Roessink, G. (1995): Bemonstering von Varkensen rondveedrijfmest in silo's. Wageningen, NL: IMAG-DLO-III. Rapport/Dienst Landbouwkundig Onderzoek, Institut voor Milieu in Agritechnik, 95-18.
- Holm-Nielsen, J.B., Al Seadi, T., Oleskowicz-Popiel, P. (2009): The future of anaerobic digestion and biogas utilization. Bioresour. Technol., 100, 5478-5484.
- Hu, X.-G., Lou, Y., Zhou, Q.-X. Xu, L. (2008): Determination of thirteen antibiotics residues in manure by solid phase extraction and high performance liquid chromatography. Chinese J. Anal. Chem., 36, 1162-1166.
- Hu, X.-G., Zhou, Q., Luo, Y. (2010): Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environ. Pollut., 158, 2992-2998.
- Jacobsen, A.M., Halling-Sørensen. B. (2006): Multi-component analysis of tetracyclines, sulfonamides and tylosin in swine manure by liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem., 384, 1164-1174.
- Jechalke, S., Dealtry, S., Smalla, K., Heuer, H. (2013): Quantification of IncP-1 plasmid prevalence in environmental samples. Appl. Environ. Microbiol., 79, 1410-1413.
- Jechalke, S., Schreiter, S., Wolters, B., Dealtry, S., Heuer, H., Smalla, K. (2014): Widespread dissemination of class 1 integrons components in soils and related ecosystems as revealed by cultivation-independent analysis. Front. Microbiol., 4, 420.
- Joy, S.R., Li, V., Snow, D.D., Gilley, J.E., Woodbury, B., Bartelt-Hunt, S.L. (2014): Fate of antimicrobials and antimicrobial resistance genes in simulated swine manure storage. Sci. Total Environ., 481, 69-74.
- Kazama, H., Hamashima, H., Sasatsu, M., Arai, T. (1998): Distribution of the antiseptic-resistance genes *qacE* and *qacE*Δ1 in Gram-negative bacteria. FEMS Microbiol. Lett., 159, 173-178.
- Kerrn, M.B., Klemmensen, T., Frimodt-Moller, N., Espersen, F. (2002): Susceptibility of danish *Escherichia coli* strains isolated from urinary tract infections and bacteraemia, and distribution of *sul* genes conferring sulfonamide resistance. J. Antimicrob. Chemother., 50, 513-516.

- Koike, S., Krapac, G., Oliver, H.D., Yannarell, A.C., Chee-Sanford, J.C., Aminov, R.I., Mackie, R.I. (2007): Monitoring and source tracking of tetracycline resistance genes in lagoons and ground-water adjacent to swine production facilities over a 3-year period. Appl. Environ. Microbiol., 73, 4813-4823.
- Klaus, U., Mohamed, S., Volk, M., Spiteller, M. (1998): Interaction of aquatic humic substances with anilazine and its derivatives: The nature of the bound residues. Chemosphere, 37, 341-361.
- Kowalewsky, H.-H. (2009): Güllefeststoffe in Biogasanlagen einsetzen Überprüfung der Separierung und Vergärung, Bericht der Landwirtschaftskammer Niedersachsen, Oldenburg.
- Kraft, C.A., Timbury, M.C., Platt, D.J. (1986): Distribution and genetic location of Tn7 in trimethoprim-resistant *Escherichia coli*. J. Med. Micribiol., 22, 125-131.
- Kreuzig, R., Kullmer, C., Mathies, B., Höltge, S., Dieckmann, H. (2003): Fate and behaviour of pharmaceutical residues in soils. Fresenius Environ. Bull., 12, 550-558.
- Kreuzig, R., Höltge, S. (2005): Investigations on the fate of sulfadiazine in manured soils: Laboratory experiments and test plot studies. Environ. Toxicol. Chem., 24, 771-776.
- Kreuzig, R., Höltge, S., Brunotte, J., Berenzen, N., Wogram, J., Schulz, R. (2005): Test plot studies on runoff of sulfonamides from manured soils after sprinkler irrigation. Environ. Toxicol. Chem., 24, 777-781.
- Kreuzig, R., Höltge, S., Heise, J., Schmanteck, I., Stein, F., Batarseh, M. (2007): Veterinary Medicinal Products in Manures and Manured Soils: Development of a Technical Protocol for Laboratory Tests. UBA-Texte 45/07, ISSN 1862-4804. Umweltbundesamt, Dessau-Roßlau, 1-142. http://www.umweltdaten.de/publikationen/fpdf-l/ 3343.pdf.
- Kreuzig, R. (2010): The reference manure concept for transformation tests of veterinary medicines and biocides in liquid bovine and pig manures. Clean, 38, 697-705.
- Kreuzig, R., Hartmann, C., Teigeler, J., Cvetković, B., Schlag, P., Höltge, S. (2010a): Development of a novel concept for fate monitoring of biocides in manure and manured soil taking ¹⁴C-imazalil as an example. Chemosphere, 79, 1089-1094.
- Kreuzig, R., Schlag, P., Teigeler, J., Hartmann, C., Cvetković, B. (2010b): Technical protocol: Transformation of biocides in liquid manures. UBA-Texte 45/07, ISSN 1862-4804. Umwelt-bundesamt, Dessau-Roßlau, 1-116. http://www.umweltdaten.de/publikationen/pdf-l/ 3393.pdf.
- Kumar, K., Gupta, S.C., Chander, Y., Singh, A.K. (2005): Antibiotic use in agriculture and its impact on the terrestrial environment. Adv. Agron., 87, 1-54.
- Lamshöft, M., Sukul, P., Zühlke, S., Spiteller, M. (2007): Metabolism of ¹⁴C-labelled and non-labelled sulfadiazine after administration to pigs. Anal. Bioanal. Chem., 388,733-745.
- Lamshöft, M., Sukul, P., Zühlke, S., Spiteller, M. (2010): Behaviour of ¹⁴C-sulfadiazine and ¹⁴C-difloxacin during manure storage. Sci. Total Environ., 408, 1563-1568.

- Lanz, R., Kuhnert, P., Boerlin, P. (2003): Antimicrobial resistance and resistance gene determinants in clinical *Escherichia coli* from different animal species in switzerland. Vet. Microbiol., 91, 71-84.
- Li, Y.-X., Zhang, X.-I., Li, W., Lu, X.-f., Liu, B., Wang, J. (2013): The residues and environmental risks of multiple veterinary antibiotics in animal feces. Environ. Monit. Assess., 185, 2211-2220.
- Lillenberg, M., Litvin, S.V., Nei, L., Roasto, M., Sepp, K. (2010): Enrofloxacin and ciprofloxacin uptake by plants from soil. Agron. Res., 8, 807-814.
- Lindsey, M.E., Meyer, M., Thurman, E.M. (2001): Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry. Anal. Chem., 73, 4640-4646.
- Mackie, R.I., Satoshi, K., Krapac, I., Chee-Stanford, J., Maxwell, S., Aminov, R.I. (2006): Tetracycline residues and tetracycline resistance genes in groundwater impacted by swine production facilities. Animal Biotechnol., 17, 157-176.
- Martínez-Carballo, E, González-Barreiro, C, Scharf, S, Gans, O. (2007): Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environ. Pollut., 148, 570-579.
- Martínez-Huitle, C.A., Ferro, S. (2006): Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem. Soc. Rev., 35, 1324-1340.
- Melse, R.W., Timmerman, M. (2009): Sustainable intensive livestock production demands manure and exhaust air treatment technologies. Bioresour. Technol., 100, 5506-5511.
- Mohring, S.A.I., Strzysch, I., Fernandes, M.R., Kiffmeyer, T.K., Tuerk, J., Hamscher, G. (2009): Degradation and elimination of various sulfonamides during anaerobic fermentation: A promising step on the way to sustainable pharmacy? Environ. Sci. Technol., 43, 2569-2574.
- Ng, L.K., Martin, I., Alfa, M., Mulvey, M. (2001): Multiplex OCR for the detection of tetracycline resistant genes. Mol. Cell. Prob., 15, 209-215.
- Pan, X., Qiang, W., Ben, W., Chen, M. (2011): Residual veterinary antibiotics in swine manure from concentrated animal feeding operations in Shanding Province, China. Chemosphere, 84, 695-700.
- Peak, N., Knapp. C.W., Yang, R.K., Hanfelt, M.M., Smith, M.S., Aga, D.S., Graham, D.W. (2007): Abundance of six tetracycline resistance genes in wastewater lagoons at cattle feedlots with different antibiotic use strategies. Environ. Microbiol., 9, 143-151.
- Qiao, M., Chen, W., Su, J., Zhang, B., Zhang, C. (2012): Fate of tetracyclines in swine manure of three selected swine farms in China. J. Environ. Sci., 24, 1047-1052.
- Ratsak, C., Guhl, B., Zühlke, S., Delschen, T. (2013): Veterinärantibiotikarückstände in Gülle und Gärresten aus Nordhein-Westfalen. Environ. Sci. Europe, 25, 1-11.

- Renew, J.E., Huang, C.-H. (2004): Simultaneous determination of fluoroquinolone, sulfonamide, and trimethoprim antibiotics in wastewater using tandem solid phase extraction and liquid chromatography-electrospray mass spectrometry. J. Chromatogr. A, 1042, 113-121.
- Sandvang, D., Aarestrup, F.M., Jensen, L.B. (1997): Characterisation of integrons and antibiotic resistance genes in danish multiresistant *Salmonella enterica* Typhimurium DT104. FEMS Microbiol. Lett., 157, 177-181.
- Sarmah, A.K.; Meyer, M.T., Boxall, A.B.A. (2006): A global perspective on the use of sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65, 725-759.
- Sievers, M., Schläfer, O., Bormann, H., Niedermeister, M., Bahnemann, D., Dillert, R. (2010): Machbarkeitsstudie für die Anwendung einer mikrobiellen Brennstoffzelleim Abwasser- und Abfallbereich. Deutsche Bundesstiftung Umwelt, Abschlussbericht, AZ 26580-31, 1-18.
- Smith, M.S., Yang, R., Knapp, C.W., Niu, Y., Peak, N., Hanfelt, M.M., Galland, J.C., Graham, D.W. (2004): Quantification of tetracycline resistance genes in feedlot lagoons by real-time PCR. Appl. Environ. Microbiol., 70, 7372-7377.
- Smolinka, T., Heinen, M., Chen, X.Y., Jusys, Z., Lehnert, W., Behm, R. J. (2005): CO₂ reduction on Pt electrocatalysts and its impact on H₂ oxidation in CO₂ containing fuel cell feed gas A combined in situ infrared spectroscopy, mass spectrometry and fuel cell performance study. Electrochim. Acta, 50, 5189-5199.
- Spielmeyer, A., Ahlborn, J., Hamscher, G. (2014): Simultaneous determination of 14 sulfonamides and tetracyclines in biogas plants by liquid-liquid extraction and liquid chromatography tandem mass spectrometry. Anal. Bioanal. Chem., DOI 10.1007/s00216-014-7649-3.
- Statistisches Bundesamt (2013): Land- und Forstwirtschaft, Fischerei. Viehbestand und tierische Erzeugnisse. Fachgserie 3, Reihe 4. https://destatis.de (Zugriff: 30.05.2014).
- Suzuki, M.T., Taylor, L.T., DeLong, E.F. (2000): Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5'-nuclease assays. Appl. Environ. Microbiol., 66, 4605-4614.
- Szatmári, I., Laczay, P., Borbėly, Z. (2011): Degradation of doxycycline in aged pig manure. Acta Vet. Hung, 59, 1-10.
- VDI 4630 (2008): Richtlinie für die Vergärung organischer Stoffe- Substratcharakterisierung, Probenahme, Stoffdatenerhebung, Gärversuche.1-92.
- Venglovsky, J., Sasakova, N., Placha, I. (2009): Pathogens and antibiotic residues in animal manures and hygenic and ecological risks related to subsequent land application. Bioresour. Technol., 100, 5386-5391.
- Weiland, P. (2010): Biogas production: current state and perspectives. Appl. Microbiol. Biotechnol., 85, 849-860.
- Winckler, C., Engels, H., Hund-Rinke, K., Luckow, T., Simon, M., Steffens, G. (2004): Verhalten

- von Tetracyclinen und anderen Veterinärantibiotika in Wirtschaftsdünger und Boden. UBA-Texte 44/04, ISSN 0722-186X. Umweltbundesamt, Dessau-Roßlau, 1-157. http://www.umwelt-daten.de/publikationen/pdf-l/2812.pdf. (access: 30 May 2014).
- Wu, S., Dalsgaard, A., Hammerum, A.M., Porsbo, L.J., Jensen, L.B. (2010): Prevalence and characterization of plasmids carrying sulfonamide resistance genes among *Escherichia coli* from pigs, pig carcasses and human. Acta. Vet. Scan., 52, 47-54.
- Zhou, L.-J., Ying, G.-G., Liu, S., Zhao, J.-J., Chen, F., Zhang, R.-Q., Peng, F.-Q., Zhang, Q.-Q. (2012): Simultaneous determination of human and veterinary antibiotics in various environmental matrices by rapid resolution liquid chromatography-electrospray ionization tandem mass spectrometry. J. Chromatogr. A, 1244, 123-138.
- Zhou, L.-J., Ying, G.-G., Zhang, R.-Q., Liu, S., Lai, H.-J., Chen, Z.-F., Yang, B., Zhao, J-L. (2013a): Use patterns, excretion masses and contamination profiles of antibiotics in a typical swine farm, south China. Environ. Sci.: Processes Impacts, 15, 802-813.
- Zhou, L.-J., Ying, G.-G., Liu, S., Zhang, R.-Q., Lai, H.-J., Chen, Z.-F., Pan, C.-G. (2013b): Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle in China. Sci. Total Environ., 444, 183-195.

8. Anhang

8.1 Rückstandsanalytische Untersuchungen in Praxisbetrieben (A)

Tab. A1: Antibiotika-Abgaben und Rückstände in BRA 1.

Schweinehaltung	1000 Mastsch	1000 Mastschweine; Güllelagerung: Keller, Silo; anteilig			
	Fremdgülle.				
Probenahme	15.02.2012 + 06.03.2012				
Antibiotika-Abgaben	09/2011 bis 02	2/2012			
Antibiotika	Abg	aben	Entnahme-	Konzentration	
	Anzahl	Tiere	ort	[mg/kg TM]	
Tetracyclin	6	140-288	Silo ^{1*}	179	
				143	
				171	
			Silo ^{2*}	126	
			Keller ^{1#}	207	
				201	
			Keller ^{2#}	191	
Tylosin	3	20-356	Silo ^{1*}	n.d.	
				n.d.	
				n.d.	
			Silo ^{2*}	n.d.	
			Keller ^{1#}	n.d.	
				n.d.	
			Keller ^{2#}	n.d.	

¹: Bypass-Sammler, ²: Probensonde, ^{*}: Gülle gerührt, [#]: Gülle ungerührt, TM: Trockenmasse, n.d.: nicht detektiert.

Tab. A1: Fortsetzung.

Probenahme	04.09.2012			
Antibiotika-Abgaben	02/2012 bis 09/2012			
Antibiotika	Abg	aben	Entnahme-	Konzentration
	Anzahl	Tiere	ort	[mg/kg TM]
Tetracyclin	8	140-208	Silo ^{1*}	300
Tylosin	9	20-355		n.d.

¹: Bypass-Sammler, ^{*}: Gülle gerührt, TM: Trockenmasse, n.d.: nicht detektiert.

Tab. A 1: Fortsetzung.

Probenahme	22.02.2013				
Antibiotika-Abgaben	09/2012 bis 0	09/2012 bis 02/2013			
Antibiotika	Abg	aben	Entnahme-	Konzentration	
	Anzahl	Tiere	ort	[mg/kg TM]	
Tetracyclin	6	144-176	Silo ^{1*}	265	
Tylosin	2	30-153		n.d.	

¹: Bypass-Sammler, *: Gülle gerührt, TM: Trockenmasse, n.d.: nicht detektiert.

Tab. A2: Antibiotika-Abgaben und Rückstände in BRA 2.

Schweinehaltung	320 Mastplätze; Rinderstall, Güllelagerung: Lagune			
	(¾ Schweinegülle, ⅓ Rindergülle), Betriebs- und Fremdgül-			
	le.			
Probenahme	14.02.2012			
Antibiotika-Abgaben	09/2011 bis 02	2/2012		
Antibiotika	Abga	aben	Entnahme-	Konzentration
	Anzahl	Tiere	ort	[mg/kg TM]
Doxycyclin	2	120-200	Lagune ^{3#}	13.6ª
			Lagune ^{3*}	9.3ª
				28.9
Tylosin	1	200	Lagune ^{3#}	n.d. ^a
			Lagune ^{3*}	n.d. ^a
				n.d.

³: Rücklauf Vakuumtankwagen,*: Gülle gerührt, *: Gülle ungerührt, a: Analysenmethode a, TM: Trockenmasse, n.d.: nicht detektiert.

Tab. A2: Fortsetzung.

Probenahme	04.09.2012			
Antibiotika-Abgaben	02/2012 bis 09/2012			
Antibiotika	Abgaben Entnahme- Konzentration			Konzentration
	Anzahl	Tiere	ort	[mg/kg TM]
Doxycyclin	1	120	Lagune ^{3*}	20.3
Tylosin	1	200		n.d.

³: Rücklauf Vakuumtankwagen, *: Gülle gerührt, TM: Trockenmasse, n.d.: nicht detektiert.

Tab. A2: Fortsetzung.

Probenahme	19.02.2013				
Antibiotika-Abgaben	09/2012 bis 02/	09/2012 bis 02/2013			
Antibiotika	Abga	Abgaben Entnahme- Konzentration			
	Anzahl	Tiere	ort	[mg/kg TM]	
Chlortetracyclin	k.A.	k.A.	Lagune ^{3*}	1.7	
Doxycyclin	1	240		11.0	
Tetracyclin	k.A.	k.A.		2.9	

³: Rücklauf Vakuumtankwagen,*: Gülle gerührt, k.A.: keine Angabe, TM: Trockenmasse.

Tab. A3: Antibiotika-Abgaben und Rückstände in BRA 3.

Schweinehaltung	300 Mastplätze;			
	Güllelagerung: Keller; Betrieb Ende 2012 verpachtet.			
Probenahme	15.02.2012			
Antibiotika-Abgaben	09/2011 bis 02/2012			
Antibiotika	Abga	ben	Entnahme-	Konzentration
	Anzahl Tiere ort [mg/kg TM]			[mg/kg TM]
Tetracyclin	2	100	Keller ^{2#}	7.6 ^a

²: Probensonde, [#]: Gülle ungerührt, ^a: Analysenmethode a, TM: Trockenmasse.

Tab. A3: Fortsetzung.

Probenahme	04.09.2012			
Antibiotika-Abgaben	02/2012 bis 09/2012			
Antibiotika	Abgaben		Entnahme-	Konzentration
	Anzahl Tiere		ort	[mg/kg TM]
Tetracyclin	3	100-200	Keller ^{1#}	52.9

¹: Bypass-Sammler, #: Gülle ungerührt, TM: Trockenmasse.

Tab. A4: Antibiotika-Abgaben und Rückstände in BRA 4.

Schweinehaltung	420 Mastplätze in 2 Ställen; 1 Rinderstall,				
	Güllelagerung:	Güllelagerung: Keller, Schweinegülle 100 m³, Rindergülle.			
Probenahme	15.02.2012	15.02.2012			
Antibiotika-Abgaben	09/2011 bis 02	09/2011 bis 02/2012			
Antibiotika	Abga	ben	Entnahme-	Konzentration	
	Anzahl	Tiere	ort	[mg/kg TM]	
Tetracyclin	3	242-248	Keller ^{1*} (SG)	10.2 ^a	
				4.7 ^a	
			(SG/RG)		

¹: Bypass-Sammler, ²: Probensonde, ^{*}: Gülle gerührt, [#]: Gülle ungerührt, SG: Schweinegülle, RG: Rindergülle, ^a: Analysenmethode a, TM: Trockenmasse.

Tab. A4: Fortsetzung.

Probenahme	04.09.2012			
Antibiotika-Abgaben	02/2012 bis 09/2012			
Antibiotika	Abgaben		Entnahme-	Konzentration
	Anzahl Tiere		ort	[mg/kg TM]
Tetracyclin	2	242-249	Keller ^{1#} (SG)	161

¹: Bypass-Sammler, *: Gülle ungerührt, SG: Schweinegülle, TM: Trockenmasse.

Tab. A5: Antibiotika-Abgaben und Rückstände in BRA 5.

Schweinehaltung	1100 Mastschweine in 2 Ställen;				
	Güllelagerung: Keller.				
Probenahme	16.02.2012	16.02.2012			
Antibiotika-Abgaben	09/2011 bis 02	09/2011 bis 02/2012			
Antibiotika	Abgal	ben	Entnahme-	Konzentration	
	Anzahl	Tiere	ort	[mg/kg TM]	
Tetracyclin	5 160-304		Keller ^{2#}	2.4 ^a	
Tylosin	3	30-230		n.d. ^a	

²: Probensonde, [#]: Gülle ungerührt, ^a: Analysenmethode a, TM: Trockenmasse, n.d.: nicht detektiert.

Tab. A5: Fortsetzung.

Probenahme	04.09.2012			
Antibiotika-Abgaben	02/2012 bis 09/2012			
Antibiotika	Abgaben		Entnahme-	Konzentration
	Anzahl Tiere		ort	[mg/kg TM]
Tetracyclin	3	150-299	Keller ^{2#}	263

²: Probensonde, [#]: Gülle ungerührt, TM: Trockenmasse.

Tab. A6: Antibiotika-Abgaben und Rückstände in BRA 6.

Schweinehaltung	350 Mastschweine,			
	Güllelagerung: Keller.			
Probenahme	16.02.2012			
Antibiotika-Abgaben	09/2011 bis 02/2012			
Antibiotika	Abgaben		Entnahme-	Konzentration
	Anzahl	Tiere	ort	[mg/kg TM]
Sulfadiazin	1	135	Keller ^{2#}	n.d. ^a
Trimethoprim	1	135		n.d. ^a
Tetracyclin	3	135-230		7.7 ^a

²: Probensonde, [#]: Gülle ungerührt, ^a: Analysenmethode a, TM: Trockenmasse, n.d.: nicht detektiert.

Tab. A6: Fortsetzung.

Probenahme	04.09.2012	04.09.2012			
Antibiotika-Abgaben	02/2012 bis 09	02/2012 bis 09/2012			
Antibiotika	Abga	Abgaben		Konzentration	
	Anzahl	Tiere	ort	[mg/kg TM]	
Sulfadiazin	1	220	Keller ^{2#}	0.7	
Acetyl-Sulfadiazin ^M				11.5	
Trimethoprim	1	220		n.d.	
Tetracyclin	1	220		287	

²: Probensonde, [#]: Gülle ungerührt, ^M: Metabolit von Sulfadiazin, TM: Trockenmasse, n.d.: nicht detektiert.

Tab. A7: Antibiotika-Abgaben und Rückstände in BRA 7.

Schweinehaltung	1545 Mastschweine in 3 Ställen,			
	Güllelagerung: Keller, Lagune. In Lagune anteilig Hühner-			
	trockenkot eingebracht.			
Probenahme:	16.02.2012 + 22.03.2012			
Antibiotika-Abgaben	09/2011 bis 02/2012			
Antibiotika	Abgaben		Entnahme-	Konzentration
	Anzahl	Tiere	ort	[mg/kg TM]
Sulfadimidin	k.A.	k.A.	Keller ^{2#}	n.d.
			Lagune ^{1*}	0.5 ^a
				0.6
Sulfadiazin	1	380	Keller ^{2#}	n.d.
Trimethoprim			Lagune ^{1*}	n.d.
Chlortetracyclin	3	580-820	Keller ^{2#}	1.9 ^a
				29.5
			Lagune ^{1*}	n.d. ^a
				4.9
Doxycyclin	1	365	Keller ^{2#}	n.d.
			Lagune ^{1*}	n.d.
Oxytetracyclin	k.A.	k.A.	Keller ^{2#}	n.d.
			Lagune ^{1*}	6.2
Tetracyclin	k.A.	k.A.	Keller ^{2#}	2.4
			Lagune ^{1*}	1.5
Enrofloxacin	1	30	Keller ^{2#}	n.d.
Tylosin	1	800	Lagune ^{1*}	n.d.

¹: Bypass-Sammler, ²: Probensonde, ^{*}: Gülle gerührt, [#]: Gülle ungerührt, ^a: Analysenmethode a, TM: Trockenmasse, n.d.: nicht detektiert, k.A.: keine Angabe.

Tab. A7: Fortsetzung.

Probenahme	04.09.2012				
Antibiotika-Abgaben	02/2012 bis 09/	02/2012 bis 09/2012			
Antibiotika	Abga	Abgaben		Konzentration	
	Anzahl	Tiere	ort	[mg/kg TM]	
Sulfadimidin	k.A.	k.A.	Lagune ^{1*}	n.d.	
Sulfadiazin	1	580		n.d.	
Trimethoprim	1	580		n.d.	
Chlortetracyclin	2	580-820		26.6	
Doxycyclin	k.A.	k.A.		n.d.	
Oxytetracyclin	k.A.	k.A.		n.d.	
Tetracyclin	1	385		5.5	
Enrofloxacin	1	150		n.d.	

¹: Bypass-Sammler, *: Gülle gerührt, TM: Trockenmasse, k.A.: keine Angabe, n.d.: nicht detektiert.

Tab. A7: Fortsetzung.

Probenahme	25.02.2013				
Antibiotika-Abgaben	09/2012 bis 02/2	09/2012 bis 02/2013			
Antibiotika	Abgal	Abgaben		Konzentration	
	Anzahl	Tiere	ort	[mg/kg TM]	
Sulfadimidin	k.A.	k.A.	Lagune ^{3*x}	n.d.	
Sulfadiazin	k.A.	k.A.	Lagune ^{3*y}	n.d.	
Trimethoprim	k.A.	k.A.	Lagune ^{3*z}	n.d.	
Chlortetracyclin	3	583-820		36.0	
				46.3	
				26.9	
Doxycyclin	k.A.	k.A.		n.d.	
Oxytetracyclin	k.A.	k.A.		n.d.	
Tetracyclin	k.A.	k.A.		40.3	
				42.7	
				30.0	
Enrofloxacin	k.A.	k.A.		n.d.	

³: Rücklauf Vakuumtankwagen, ^x: Probenahme morgens, ^y: Probenahme mittags, ^z: Probenahme abends, ^{*}: Gülle gerührt, k.A.: keine Angabe, TM: Trockenmasse, n.d.: nicht detektiert.

Tab. A8: Antibiotika-Abgaben und Rückstände in BRA 8.

Schweinehaltung	380 Mastschweine in 2 Ställen (300+80),				
	Güllelagerung:	Güllelagerung: Keller.			
Probenahme	16.02.2012 + 2	16.02.2012 + 22.03.2012			
Antibiotika-Abgaben	09/2011 bis 02/	09/2011 bis 02/2012			
Antibiotika	Abga	ben	Entnahme-	Konzentration	
	Anzahl	Tiere	ort	[mg/kg TM]	
Tiamulin	1	1 16		n.d.	
Tylosin	3	80-150		n.d.	

²: Probensonde, [#]: Gülle ungerührt, TM: Trockenmasse, n.d.: nicht detektiert.

Tab. A8: Fortsetzung.

Probenahme	04.09.2012			
Antibiotika-Abgaben	02/2012 bis 09/2012			
Antibiotika	Abgaben		Entnahme-	Konzentration
	Anzahl Tiere		ort	[mg/kg TM]
Tylosin	1	300	Keller ^{2#}	n.d.

²: Probensonde, [#]: Gülle ungerührt, TM: Trockenmasse, n.d.: nicht detektiert.

Tab. A9: Antibiotika-Abgaben und Rückstände in BRB 1.

Schweinehaltung	840 Sauen, 24500 Ferkel/a,			
	Güllelagerung: Silos			
Probenahme	27.03.2012			
Antibiotika-Abgaben	09/2011 bis 03	3/2012		
Antibiotika	Abg	aben	Entnahme-	Konzentration
	Anzahl	Tiere	ort	[mg/kg TM]
Sulfadimidin	7	6-90	Silo ^{1*}	2.7 ^a
				1.0
Acetyl-Sulfadimidin ^M				1.5 ^a
				1.0
Sulfadimethoxin	1	30		n.d.
Trimethoprim	8	6-90		n.d. ^a
				n.d.
Tetracyclin	2	1000-1400		0.7 ^a
				8.5
Tylosin	1	2		n.d ^a
				n.d.

¹: Bypass-Sammler, ^{*}: Gülle gerührt, ^M: Metabolit von Sulfadimidin, TM: Trockenmasse, n.d.: nicht detektiert.

Tab. A10: Antibiotika-Abgaben und Rückstände in BRB 2.

Schweinehaltung	200 Sauen, 5000 Ferkel/a,				
	Güllelagerung: Silo.				
Probenahme	06.03.2012				
Antibiotika-Abgaben	09/2011 bis 03/	/2012			
Antibiotika	Abga	iben	Entnahme-	Konzentration	
	Anzahl	ort	[mg/kg TM]		
Sulfadimidin	3	6	Silo ^{1*}	2.2	
Acetyl-Sulfadimidin ^M				n.d.	
Trimethoprim	3	6		n.d.	
Chlortetracyclin	1	100		55.1	
Doxycyclin	2	80-210		15.4	
Oxytetracyclin	6 4-15 2.7				
Enrofloxacin	3	10-30		n.d.	
Tylosin	2	8-25		n.d.	

¹: Bypass-Sammler, *: Gülle gerührt, ^M: Metabolit von Sulfadimidin, TM: Trockenmasse, n.d.: nicht detektiert.

Tab. A10: Fortsetzung.

Probenahme	19.09.2012				
Antibiotika-Abgaben	03/2012 bis 09/2	03/2012 bis 09/2012			
Antibiotika	Abga	ben	Entnahme-	Konzentration	
	Anzahl	Tiere	ort	[mg/kg TM]	
Sulfadimidin	1	4	Silo ^{2*}	n.d.	
Acetyl-Sulfadimidin ^M				n.d.	
Trimethoprim	1	4		n.d.	
Chlortetracyclin	k.A.	k.A.		n.d.	
Doxycyclin	1	100		50.0	
Oxytetracyclin	4	8-10		n.d.	
Enrofloxacin	k.A.	k.A.		n.d.	
Tylosin	4	1-25		n.d.	

¹: Bypass-Sammler, *: Gülle gerührt, ^M: Metabolit von Sulfadimidin, TM: Trockenmasse, n.d.: nicht detektiert, k.A.: keine Angabe.

Tab. A10: Fortsetzung

Probenahme	20.02.2013				
Antibiotika-Abgaben	09/2012 bis 02/2	09/2012 bis 02/2012			
Antibiotika	Abga	ben	Entnahme-	Konzentration	
	Anzahl	Tiere	ort	[mg/kg TM]	
Sulfadimidin	k.A.	k.A.	Silo ^{1*}	n.d.	
Acetyl-Sulfadimidin ^M				n.d.	
Trimethoprim	k.A.	k.A.		n.d.	
Chlortetracyclin	k.A.	k.A.		n.d.	
Doxycyclin	1	1600		11.5	
Oxytetracyclin	2	5		n.d.	
Enrofloxacin	1	30		n.d.	
Tylosin	1	8		n.d.	

¹: Bypass-Sammler, *: Gülle gerührt, ^M: Metabolit von Sulfadimidin, k.A.: keine Angabe, TM: Trockenmasse, n.d.: nicht detektiert.

Tab. A11: Antibiotika-Abgaben und Rückstände in BRB 3.

Schweinehaltung	220 Sauen, 5900 Ferkel/a, 2000 Mastschweine,			
	Güllelagerung: Silo, Keller.			
Probenahme	27.03.2012			
Antibiotika-Abgaben	09/2011 bis 03/	/2012		
Antibiotika	Abga	ıben	Entnahme-	Konzentration
	Anzahl	Tiere	ort	[mg/kg TM]
Sulfadimidin	k.A.	k.A.	Keller ^{2#}	0.8
Acetyl-Sulfadimidin ^M				n.d.
Sulfadimethoxin	k.A.	k.A.		0.5
Trimethoprim	k.A.	k.A.		0.2
Chlortetracyclin	k.A.	k.A.		n.d.
Doxycyclin	k.A.	k.A.		19.3
Oxytetracyclin	k.A.	k.A.		0.6
Tetracyclin	k.A.	k.A.		24.4
Enrofloxacin	k.A.	k.A.		n.d.
Tylosin	k.A.	k.A.		n.d.

²: Probensonde, [#]: Gülle ungerührt, ^M: Metabolit von Sulfadimidin, TM: Trockenmasse, n.d.: nicht detektiert, k.A.: keine Angabe.

Tab. A11: Fortsetzung.

Probenahme	20.09.2012				
Antibiotika-Abgaben	03/2012 bis 09/2012				
Antibiotika	Abga	ben	Entnahme-	Konzentration	
	Anzahl	Tiere	ort	[mg/kg TM]	
Sulfadimidin	k.A.	k.A.	Keller ^{2#}	n.d.	
			Silo ^{2*}	n.d.	
Acetyl-Sulfadimidin ^M	k.A.	k.A.	Keller ^{2#}	n.d.	
			Silo ^{2*}	n.d.	
Sulfadimethoxin	k.A.	k.A.	Keller ^{2#}	n.d.	
			Silo ^{2*}	n.d.	
Trimethoprim	k.A.	k.A.	Keller ^{2#}	n.d.	
			Silo ^{2*}	n.d.	
Chlortetracyclin	k.A.	k.A.	Keller ^{2#}	n.d.	
			Silo ^{2*}	n.d.	
Doxycyclin	k.A.	k.A.	Keller ^{2#}	19.0	
			Silo ^{2*}	9.4	
Oxytetracyclin	k.A.	k.A.	Keller ^{2#}	n.d.	
			Silo ^{2*}	n.d.	
Tetracyclin	k.A.	k.A.	Keller ^{2#}	4.6	
			Silo ^{2*}	n.d.	
Enrofloxacin	k.A.	k.A.	Keller ^{2#}	n.d.	
			Silo ^{2*}	n.d.	
Tylosin	k.A.	k.A.	Keller ^{2#}	n.d.	
			Silo ^{2*}	n.d.	

²: Probensonde, [#]: Gülle ungerührt, ^{*}: Gülle gerührt, ^M: Metabolit von Sulfadimidin, k.A.: keine Angabe, TM: Trockenmasse, n.d.: nicht detektiert.

Tab. A12: Antibiotika-Abgaben und Rückstände in BRB 4.

Schweinehaltung	130 Sauen, 3500 Ferkel/a, 800 Mastschweine,				
	Güllelagerung:	Keller, Fremo	lgülle: 10 % Rin	dergülle.	
Probenahme	28.03.2012				
Antibiotika-Abgaben	09/2011 bis 03/	/2012			
Antibiotika	Abga	iben	Entnahme-	Konzentration	
	Anzahl	Tiere	ort	[mg/kg TM]	
Doxycyclin	1	130	Keller, Ab- ferkel ^{2*}	17.8 ^c	
			Keller, Mast ^{2*}	20.3	
Oxytetracyclin	9	5-75	Keller, Ab- ferkel ^{2*}	19.5°	
			Keller, Mast ^{2*}	13.6	
Enrofloxacin	1	30	Keller, Ab- ferkel ^{2*}	0.3°	
			Keller, Mast ^{2*}	n.d.	
Tylosin	5	8-200	Keller, Ab- ferkel ^{2*}	n.d. ^c	
			Keller, Mast ^{2*}	n.d.	

²: Probensonde, ^{*}: Gülle gerührt, ^c: Analysenmethode c, TM: Trockenmasse, n.d.: nicht detektiert.

Tab. A12: Fortsetzung.

Probenahme	19.09.2012			
Antibiotika-Abgaben	03/2012 bis 09/2	2012		
Antibiotika	Abgal	Abgaben		Konzentration
	Anzahl	Tiere	ort	[mg/kg TM]
Chlortetracyclin	1 35	Keller, Ab- ferkel ^{2*}	n.d.	
			Keller, Mast ^{2*}	15.8
Oxytetracyclin	7 1-60	Keller, Ab- ferkel ^{2*}	211	
			Keller, Mast ^{2*}	14.9
Enrofloxacin	1	30	Keller, Ab- ferkel ^{2*}	n.d.
			Keller, Mast ^{2*}	n.d.
Tylosin	2	8-50	Keller, Ab- ferkel ^{2*}	n.d.
			Keller, Mast ^{2*}	n.d.

²: Probensonde, *: Gülle gerührt, TM: Trockenmasse, n.d.: nicht detektiert.

Tab. A13: Antibiotika-Abgaben und Rückstände in BRB 5.

Schweinehaltung	100 Sauen, 27 Güllelagerung:	100 Sauen, 2700 Ferkel/a, 650 Mastschweine,				
	<u> </u>	Silo.				
Probenahme	10.05.2012					
Antibiotika-Abgaben	09/2011 bis 03/	/2012				
Antibiotika	Abga	ben	Entnahme-	Konzentration		
	Anzahl	Tiere	ort	[mg/kg TM]		
Sulfadiazin	1	5 kg	Silo ^{1*}	n.d.		
Acetyl-Sulfadiazin ^M				n.d.		
Trimethoprim	1	1 5 kg n.d.				
Chlortetracyclin	1 5 kg 26.4					
Doxycyclin	3 5 kg 27.7					
Enrofloxacin	k.A.	k.A.		n.d.		

¹: Bypass-Sammler, ^{*}: Gülle gerührt, ^M: Metabolit von Sulfadiazin, TM: Trockenmasse, n.d.: nicht detektiert, k.A.: keine Angabe.

Tab. A13: Fortsetzung.

Probenahme	20.09.2012				
Antibiotika-Abgaben	03/2012 bis 09/2012				
Antibiotika	Abgal	Abgaben Entnahme- Konzentration			
	Anzahl	Tiere	ort	[mg/kg TM]	
Doxycyclin	2	500-700	Silo ^{2#}	101	
Enrofloxacin	3	4-125		n.d.	

²: Probensonde, [#]: Gülle ungerührt, TM: Trockenmasse, n.d.: nicht detektiert.

Tab. A13: Fortsetzung.

Probenahme	21.02.2013			
Antibiotika-Abgaben	09/2012 bis 02/2013			
Antibiotika	Abgat	pen	Entnahme-	Konzentration
	Anzahl	Tiere	ort	[mg/kg TM]
Doxycyclin	1	700	Silo ^{1*}	32.0
Enrofloxacin	2	4-35		n.d.

¹: Bypass-Sammler, ^{*}: Gülle gerührt, TM: Trockenmasse, n.d.: nicht detektiert.

Tab. A14: Antibiotika-Abgaben und Rückstände in BRB 6.

Schweinehaltung	265 Sauen, 7000 Ferkel/a,			
	Güllelagerung: Keller.			
Probenahme	28.03.2012			
Antibiotika-Abgaben	09/2011 bis 03/	/2012		
Antibiotika	Abga	ben	Entnahme-	Konzentration
	Anzahl	Tiere	ort	[mg/kg TM]
Chlortetracyclin	6	120-715	Keller ^{2*}	15.6 ^b
				48.3
Tylosin	4 34-67			n.d. ^b
				n.d.

²: Probensonde, ^{*}: Gülle gerührt, ^b: Analysenmethode b, TM: Trockenmasse, n.d.: nicht detektiert.

 Tab. A15:
 Antibiotika-Abgaben und Rückstände in BRB 7.

Schweinehaltung	130 Sauen, 3500 Ferkel/a, 800 Mastschweine, Güllelagerung: Keller, Fremdgülle: 10 % Rindergülle.			
Probenahme	27.03.2012			
Antibiotika-Abgaben	09/2011 bis 03	/2012		
Antibiotika	Abga	aben	Entnahme-	Konzentration
	Anzahl	Tiere	ort	[mg/kg TM]
Sulfadiazin	4	200-500	Keller ^{2*}	n.d.
Acetyl-Sulfadiazin ^M				n.d.
Trimethoprim	4	200-500		n.d.
Doxycyclin	1	200		n.d.
Tetracyclin	2	380-400		227
Enrofloxacin	5	4-190		n.d.
Tylosin	1	1		n.d.

²: Probensonde, ^{*}: Gülle gerührt, ^M: Metabolit von Sulfadiazin, TM: Trockenmasse, n.d.: nicht detektiert.

Tab. A15: Fortsetzung.

Probenahme	20.09.2012	20.09.2012				
Antibiotika-Abgaben	03/2012 bis 09/2	03/2012 bis 09/2012				
Antibiotika	Abga	ben	Entnahme-	Konzentration		
	Anzahl	Tiere	ort	[mg/kg TM]		
Sulfadiazin	1	400	Keller ^{2*}	n.d.		
Acetyl-Sulfadiazin ^M				n.d.		
Trimethoprim	1	400		n.d.		
Doxycyclin	1	400		n.d.		
Tetracyclin	1	400		1.5		
Enrofloxacin	4	4-50		1.3		
Tiamulin	1	50		1.4		
Tylosin	1	1		n.d.		

²: Probensonde, ^{*}: Gülle gerührt, ^M: Metabolit von Sulfadiazin, TM: Trockenmasse, n.d.: nicht detektiert.

Tab. A15: Fortsetzung.

Probenahme	28.02.2013	28.02.2013			
Antibiotika-Abgaben	09/2012 bis 02/2	09/2012 bis 02/2013			
Antibiotika	Abga	Abgaben Entnahme- Konzentration			
	Anzahl	Tiere	ort	[mg/kg TM]	
Sulfadiazin	2	400-440	Keller ^{2*}	n.d.	
Acetyl-Sulfadiazin ^M				n.d.	
Trimethoprim	2	400-440		n.d.	
Tetracyclin	2	2 400-440 89.2			
Enrofloxacin	3	4-64		n.d.	

²: Probensonde, ^{*}: Gülle gerührt, ^M: Metabolit von Sulfadiazin, TM: Trockenmasse, n.d.: nicht detektiert.

Tab. A16: Antibiotika-Abgaben und Rückstände in BRB 8.

Schweinehaltung	220 Sauen, 6000 Ferkel/a, Güllelagerung: Silo.			
Probenahme	10.05.2012			
Antibiotika-Abgaben	09/2011 bis 05	/2012		
Antibiotika	Abga	aben	Entnahme-	Konzentration
	Anzahl	Tiere	ort	[mg/kg TM]
Sulfadiazin	1	60	Silo ^{1*}	n.d.
Acetyl-Sulfadiazin ^M				n.d.
Sulfadimidin	18	3-20		5.6
Acetyl-Sulfadimidin ^M				n.d.
Trimethoprim	19	3-60		n.d.
Doxycyclin	1	30		5.0
Enrofloxacin	8	30-65		n.d.

¹: Bypass-Sammler, *: Gülle gerührt, ^M: Metabolit von Sulfadiazin bzw. Sulfadimidin, TM: Trockenmasse, n.d.: nicht detektiert.

Tab. A16: Fortsetzung.

Probenahme	21.09.2012				
Antibiotika-Abgaben	05/2012 bis 09	05/2012 bis 09/2012			
Antibiotika	Abga	aben	Entnahme-	Konzentration	
	Anzahl	Tiere	ort	[mg/kg TM]	
Sulfadiazin	2	85-180	Silo ^{1*}	n.d.	
Acetyl-Sulfadiazin ^M				n.d.	
Sulfadimidin	7	3-10		23.0	
Acetyl-Sulfadimidin ^M				n.d.	
Trimethoprim	9	3-180		n.d.	
Doxycyclin	2	85-180		52.6	
Enrofloxacin	2	30-65		n.d.	

¹: Bypass-Sammler, *: Gülle gerührt, ^M: Metabolit von Sulfadiazin bzw. Sulfadimidin, TM: Trockenmasse, n.d.: nicht detektiert.

Tab. A17: Antibiotika-Abgaben und Rückstände in BGA 1.

Schweinehaltung	1000 Mastplätz	1000 Mastplätze, 400 Aufzuchtplätze.			
	Güllelagerung:	Silo, Keller, a	nteilig: Fremdgü	lle.	
Biogasanlage	430 kW. Substi	430 kW. Substrat: 40 % Schweinegülle (15 m³/d), 60 % Si-			
	Iomais (14 t/d),	Kartoffelschle	empe (8 m³/d), w	renig Rüben.	
	Fermenter (Ver	weilzeit: 100	d), Nachgärer, E	ndlager.	
Probenahme	29.03.2012				
Antibiotika-Abgaben	09/2011 bis 03/	/2012			
Antibiotika	Abga	aben	Entnahme-	Konzentration	
	Anzahl	Tiere	ort	[mg/kg TM]	
Sulfadiazin	1	800	Silo ^{2*}	7.3	
			Endlager 3*	0.9	
Acetyl-Sulfadiazin ^M				5.5	
				n.d.	
Trimethroprim	1	800		n.d.	
				n.d.	
Doxycyclin	k.A.	k.A.		n.d.	
				n.d.	
Oxytetracyclin	1	5		n.d.	
				n.d.	
Tetracyclin	k.A.	k.A.		5.9	
				0.9	

²: Probensonde, ³: Rücklauf Vakuumtankwagen, ^{*}: gerührt, ^M: Metabolit von Sulfadiazin, TM: Trockenmasse, n.d.: nicht detektiert, k.A.: keine Angabe.

Tab. A17: Fortsetzung.

Probenahme	17.09.2012, a	17.09.2012, anteiliger Einsatz von Fremdgülle				
Antibiotika-Abgaben	03/2012 bis 09	03/2012 bis 09/2012				
Antibiotika	Abga	ben	Entnahme-	Konzentration		
	Anzahl	Tiere	ort	[mg/kg TM]		
Sulfadiazin	k.A.	k.A.	Keller ^{2#}	n.d.		
			Fermenter 4*	0.4		
			Endlager ^{2*}	n.d.		
Acetyl-Sulfadiazin ^M				n.d.		
				n.d.		
				n.d.		
Doxycyclin	k.A.	k.A.		n.d.		
				1.2		
				1.3		
Oxytetracyclin	k.A.	k.A.		n.d.		
				n.d.		
				n.d.		
Tetracyclin	k.A.	k.A.		1.1		
				1.2		
				1.6		

²: Probensonde, ⁴: Auslassventil, ^{*}: gerührt, [#]: Gülle ungerührt, ^M: Metabolit von Sulfadiazin, TM: Trockenmasse, n.d.: nicht detektiert, k.A.: keine Angabe.

Tab. A17: Fortsetzung.

Probenahme	25.02.2013, ar	25.02.2013, anteilig: Fremdgülle			
Antibiotika-Abgaben	09/2012 bis 02	09/2012 bis 02/2013			
Antibiotika	Abgat	ben	Entnahme-	Konzentration	
	Anzahl	Tiere	ort	[mg/kg TM]	
Sulfadiazin	k.A.	k.A.	Keller ^{2#}	n.d.	
			Fermenter 4*	n.d.	
			Endlager ^{2*}	n.d.	
Acetyl-Sulfadiazin ^M				n.d.	
				n.d.	
				n.d.	
Doxycyclin	k.A.	k.A.		n.d.	
				1.3	
				9.2	
Oxytetracyclin	k.A.	k.A.		n.d.	
				n.d.	
				n.d.	
Tetracyclin	k.A.	k.A.		1.8	
				0.6	
				n.d.	

²: Probensonde, ⁴: Auslassventil, ^{*}: gerührt, [#]: Gülle ungerührt, TM: Trockenmasse, n.d.: nicht detektiert, k.A.: keine Angabe.

Tab. A17: Fortsetzung.

Probenahme	19.09.2013, anteilig: Fremdgülle			
Antibiotika-Abgaben	02/2013 bis 09/2013			
Antibiotika	Abga	ben	Entnahme-	Konzentration
	Anzahl	Tiere	ort	[mg/kg TM]
Doxycyclin	k.A.	k.A.	Keller ^{2#}	3.2
			Fermenter 4*	3.3
			Nachgärer ^{2*}	2.6
Tetracyclin	k.A.	k.A.		0.5
				1.8
				1.4

²: Probensonde, ⁴: Auslassventil, k.A.: keine Angabe, ^{*}: gerührt, [#]: Gülle ungerührt, TM: Trockenmasse, n.d.: nicht detektiert.

Tab. A18: Antibiotika-Abgaben und Rückstände in BGA 2.

Schweinehaltung	475 Sauen,	475 Sauen, 13000 Ferkel/a.			
	Güllelagerur	Güllelagerung: Keller.			
Biogasanlage	500 kW. Sub	500 kW. Substrat: 35 % Schweinegülle, 65 % Silomais,			
	Gras, Ganzp	oflanzensilage	Sonnenblume, Zw	viebeln.	
	Fermenter, N	Nachgärer, End	llager.		
Probenahme	28.03.2012				
Antibiotika-Abgaben	09/2011 bis	03/2012			
Antibiotika	Abg	aben	Entnahme-	Konzentration	
	Anzahl	Tiere	ort	[mg/kg TM]	
Sulfadoxin	5	12-28	Keller ^{2#}	n.d.	
			Endlager 4*	n.d.	
Trimethoprim	5	12-28		n.d.	
				n.d.	
Chlortetracyclin	1	17		n.d.	
				0.9	
Doxycyclin	3	1000-1600		n.d.	
				8.2	
Enrofloxacin	4	17-28		n.d.	
				n.d.	

²: Probensonde, ⁴: Auslassventil, ^{*}: gerührt, [#]: Gülle ungerührt, TM: Trockenmasse, n.d.: nicht detektiert.

Tab. A18: Fortsetzung.

Probenahme	20.09.2012			
Antibiotika-Abgaben	03/2012 bis 0	9/2012		
Antibiotika	Abga	Abgaben		Konzentration
	Anzahl	Tiere	ort	[mg/kg TM]
Sulfadoxin	7	6-28	Keller ^{2#}	n.d.
			Fermenter 4*	n.d.
			Nachgärer 4*	n.d.
			Endlager ^{4*}	n.d.
Trimethoprim	7	6-28		n.d.
				n.d.
				n.d.
				n.d.
Chlortetracyclin	1	17		n.d.
				n.d.
				n.d.
				n.d.
Doxycyclin	5	1300-2000		39.5
				5.4
				7.9
				7.4
Enrofloxacin	7	12-56		1.4
				n.d.
				n.d.
				n.d.
Tylosin	1	500		n.d.
				n.d.
				n.d.
				n.d.

²: Probensonde, ⁴: Auslassventil, ^{*}: gerührt, [#]: Gülle ungerührt, TM: Trockenmasse, n.d.: nicht detektiert.

Tab. A18: Fortsetzung.

Probenahme	28.02.2013				
Antibiotika-Abgaben	09/2012 bis	02/2013			
Antibiotika	Abg	Abgaben		Konzentration	
	Anzahl	Tiere	ort	[mg/kg TM]	
Sulfamerazin	7	10-17	Keller 1 ^{2#}	n.d.	
			Keller 2 ^{2#}	n.d.	
			Fermenter 4*	n.d.	
			Nachgärer 4*	n.d.	
			Endlager ^{4*}	n.d.	
Trimethoprim	7	10-17		n.d.	
			_	n.d.	
Chlortetracyclin	2	10		n.d.	
				n.d.	
Doxycyclin	k.A.	k.A.		n.d.	
				1.9	
				1.1	
				4.6	
				10.5	

²: Probensonde, ⁴: Auslassventil, ^{*}: gerührt, [#]: Gülle ungerührt, k.A.: keine Angabe, TM: Trockenmasse, n.d.: nicht detektiert.

Tab. A18: Fortsetzung.

Probenahme	28.02.2013	28.02.2013				
Antibiotika-Abgaben	09/2012 bis	09/2012 bis 02/2013				
Antibiotika	Abg	gaben	Entnahme-	Konzentration		
			ort	[mg/kg TM]		
Enrofloxacin	7	12-56	Keller 1 ^{2#}	n.d.		
			Keller 2 ^{2#}	n.d.		
			Fermenter 4*	n.d.		
			Nachgärer 4*	n.d.		
			Endlager 4*	n.d.		
Tetracyclin	k.A.	k.A.		0.7		
				n.d.		
				n.d.		
				n.d.		
				n.d.		

²: Probensonde, ⁴: Auslassventil, ^{*}: gerührt, [#]: Gülle ungerührt, k.A.: keine Angabe, TM: Trockenmasse, n.d.: nicht detektiert.

Tab. A19: Antibiotika-Abgaben und Rückstände in BGA 3.

Schweinehaltung	550 Sauen, 5	550 Sauen, 550 Mastplätze.				
	Güllelagerung: Keller, Zwischenlager.					
Biogasanlage	410 kW. Subs	410 kW. Substrat: 35-40 % Schweinegülle (10 m³/d), 60-65				
	% Silomais (1	8 t/d).				
	Fermenter, Na	achgärer, En	dlager.			
Probenahme	28.03.2012					
Antibiotika-Abgaben	09/2011 bis 0	3/2012				
Antibiotika	Abga	ıben	Entnahme-	Konzentration		
	Anzahl	Tiere	ort	[mg/kg TM]		
Doxycyclin	1	280	Keller 2*	24.7		
			Fermenter 4*	n.d. ^a		
			Nachgärer 4*	n.d. ^a		
			Endlager 4*	n.d.		
Enrofloxacin	4	66-100		n.d.		
				n.d. ^a		
				n.d. ^a		
				n.d.		
Tylosin	4	20-60		n.d.		
				n.d. ^a		
				n.d. ^a		
				n.d.		

²: Probensonde, ⁴: Auslassventil, ^{*}: Gülle gerührt, ^a: Analysenmethode a, TM: Trockenmasse, n.d.: nicht detektiert.

Tab. A19: Fortsetzung.

Probenahme	19.09.2012				
Antibiotika-Abgaben	03/2012 bis 09/2012				
Antibiotika	Abg	aben	Entnahme-	Konzentration	
	Anzahl	Tiere	ort	[mg/kg TM]	
Doxycyclin	3	200-300	Keller 2*	166	
			Fermenter 4*	0.4	
			Nachgärer 4*	2.0	
			Endlager 4*	2.1	
Enrofloxacin	k.A.	k.A.		n.d.	
				n.d.	
				n.d.	
				n.d.	

²: Probensonde, ⁴: Auslassventil, ^{*}: gerührt, TM: Trockenmasse, n.d.: nicht detektiert, k.A.: keine Angabe.

Tab. A19: Fortsetzung.

Probenahme	30.01.2013				
Antibiotika-Abgaben	09/2012 bis	09/2012 bis 02/2013			
Antibiotika	Abg	aben	Entnahme-	Konzentration	
	Anzahl	Tiere	ort	[mg/kg TM]	
Doxycyclin	k.A.	k.A.	Keller 2*	11.7	
			Fermenter 4*	2.0	
			Nachgärer 4*	n.a.	
			Endlager 4*	3.0	
Enrofloxacin	5	33-150		n.d.	
				n.d.	
				n.a.	
				n.d.	
Tylosin	2	10-20		n.d.	
				n.d.	
				n.a.	
				n.d.	

²: Probensonde, ⁴: Auslassventil, ^{*}: gerührt, TM: Trockenmasse, n.a.: nicht analysiert, n.d.: nicht detektiert, k.A.: keine Angabe.

Tab. A19: Fortsetzung.

Probenahme	27.02.2013	27.02.2013			
Antibiotika-Abgaben	09/2012 bis 02/2013				
Antibiotika	Abg	aben	Entnahme-	Konzentration	
	Anzahl	Tiere	ort	[mg/kg TM]	
Doxycyclin	k.A.	k.A.	Keller 2*	13.7	
			Fermenter 4*	3.5	
			Nachgärer 4*	3.3	
			Endlager 4*	4.8	
Enrofloxacin	5	33-150		n.d.	
				n.d.	
				n.d.	
				n.d.	
Tylosin	2	10-20		n.d.	
				n.d.	
				n.d.	
				n.d.	

²: Probensonde, ⁴: Auslassventil, ^{*}: gerührt, TM: Trockenmasse, n.d.: nicht detektiert, k.A.: keine Angabe.

Tab. A19: Fortsetzung.

Probenahme	18.03.2013			
Antibiotika-Abgaben	09/2012 bis 02/2013			
Antibiotika	Abga	ben	Entnahme-	Konzentration
	Anzahl	Tiere	ort	[mg/kg TM]
Doxycyclin	k.A.	k.A.	Keller 2*	13.9
			Fermenter 4*	1.5
			Nachgärer 4*	2.5
			Endlager 4*	4.0
Enrofloxacin	5	33-150		n.d.
				n.d.
				n.d.
				n.d.
Tylosin	2	10-20		n.d.
				n.d.
				n.d.
				n.d.

²: Probensonde, ⁴: Auslassventil, ^{*}: gerührt, TM: Trockenmasse, n.d.: nicht detektiert, k.A.: keine Angabe.

Tab. A19: Fortsetzung.

Probenahme	17.09.2013			
Antibiotika-Abgaben	02/2013 bis 09/2013			
Antibiotika	Abga	aben	Entnahme-	Konzentration
	Anzahl	Tiere	ort	[mg/kg TM]
Doxycyclin	k.A.	k.A.	Keller 2*	68.6
			Fermenter 4*	1.1
			Nachgärer 4*	2.1
			Endlager ^{4*}	3.9
Enrofloxacin	4	33		n.d.
				n.d.
				n.d.
				n.d.

²: Probensonde, ⁴: Auslassventil, ^{*}: gerührt, TM: Trockenmasse, n.d.: nicht detektiert, k.A.: keine Angabe.

Tab. A19: Fortsetzung.

Probenahme	16.01.2014			
Antibiotika-Abgaben	09/2013 bis 03/2014			
Antibiotika	Abga	aben	Entnahme-	Konzentration
	Anzahl Tiere ort [mg/kg TM			
Doxycyclin	k.A. k.A. Keller ^{2*} 48.8			
			Fermenter 4*	2.9
			Nachgärer ^{4*} Gärreste ^{4*}	n.a.
			Gärreste 4*	2.3

²: Probensonde, ⁴: Auslassventil, ^{*}: gerührt, k.A.: keine Angabe, TM: Trockenmasse, n.a.: nicht analysiert.

Tab. A20: Antibiotika-Abgaben und Rückstände in BGA 4.

Schweinehaltung	265 Sauen,	265 Sauen, 7200 Ferkel/a, 2100 Mastplätze.			
	Güllelagerung: Keller, Silo.				
Biogasanlage	250 kW. Sub	strat: 35-40 %	Schweinegülle ((10 m ³ /d), 60-65	
	% Silomais (18 t/d).			
	Fermenter (\	/erweilzeit: 90-	-100 d), Nachgär	er, Endlager.	
Probenahme	28.03.2012				
Antibiotika-Abgaben	09/2011 bis	03/2012			
Antibiotika	Abg	aben	Entnahme-	Konzentration	
	Anzahl	Tiere	ort	[mg/kg TM]	
Doxycyclin	28	140-700	Silo ^{2*}	32.1	
			Fermenter 4*	n.a.	
			Nachgärer/	4.9	
Enrofloxacin	20	20-300	Endlager 4*	2.4	
				n.a.	
				n.d.	
Chlortetracyclin	k.A.	k.A.		1.0	
				n.a.	
				n.d.	

²: Probensonde, ⁴: Auslassventil, ^{*}: gerührt, TM: Trockenmasse, n.a.: nicht analysiert, n.d.: nicht detektiert, k.A.: keine Angabe.

Tab. A20: Fortsetzung.

Probenahme	20.09.2012				
Antibiotika-Abgaben	03/2012 bis 0	03/2012 bis 09/2012			
Antibiotika	Abg	aben	Entnahme-	Konzentration	
	Anzahl	Tiere	ort	[mg/kg TM]	
Doxycyclin	21	150-400	Silo ^{2*}	110	
			Fermenter 4*	7.0	
			Nachgärer/	10.1	
Enrofloxacin	6	100-275	Endlager 4*	1.4	
				n.d.	
				0.2	
Chlortetracyclin	k.A.	k.A.		n.d.	
				n.d.	
				n.d.	
Tetracyclin	k.A.	k.A.		n.d.	
				1.0	
				2.1	

²: Probensonde, ⁴: Auslassventil, ^{*}: gerührt, TM: Trockenmasse, n.d.: nicht detektiert, k.A.: keine Angabe.

Tab. A20: Fortsetzung.

Probenahme	28.02.2013						
Antibiotika-Abgaben	09/2012 bis	09/2012 bis 02/2013					
Antibiotika	Abg	jaben	Entnahme-	Konzentration			
	Anzahl	Tiere	ort	[mg/kg TM]			
Sulfadiazin	2	22-28	Silo ^{2*}	n.d.			
			Keller ^{2*}	n.d.			
			Fermenter 4*	n.d.			
			Nachgärer/	n.d.			
Trimethoprim	2	22-28	Endlager 4*	n.d.			
				n.d.			
				n.d.			
				n.d.			
Doxycyclin	26	83-400		21.4			
				30.0			
				6.4			
				10.2			
Enrofloxacin	15	3-125		0.8			
				4.7			
				n.d.			
				0.3			
Ciprofloxacin ^M	k.A.	k.A.		n.d.			
				0.8			
				n.d.			
				n.d.			
Tetracyclin	k.A.	k.A.		n.d.			
				n.d.			
				0.7			
				1.3			

²: Probensonde, ⁴: Auslassventil, ^{*}: gerührt, ^M: Metabolit von Enrofloxacin, TM: Trockenmasse, n.d.: nicht detektiert, k.A.: keine Angabe.

Tab. A20: Fortsetzung.

Probenahme	29.05.2013					
Antibiotika-Abgaben	02/2013-05/2013					
Antibiotika	Abg	gaben	Entnahme-	Konzentration		
	Anzahl	Tiere	ort	[mg/kg TM]		
Doxycyclin	15	130-520	Keller, Mast ^{2#}	54.5		
			Keller, Zucht 2*	20.1		
			Fermenter 4*	4.0		
			Nachgärer/			
			Endlager ^{4*}	7.7		
Enrofloxacin	15	6-225		0.8		
				1.7		
				n.d.		
				n.d.		
Marbofloxacin	4	12-33		n.d.		
				3.5		
				n.d.		
				n.d.		

²: Probensonde, ⁴: Auslassventil, ^{*}: gerührt, [#]: ungerührt, TM: Trockenmasse, n.d.: nicht detektiert.

Tab. A20: Fortsetzung.

Probenahme	23.08.2013						
Antibiotika-Abgaben	05/2013-08	05/2013-08/2013					
Antibiotika	Abgaben Entnahme- Konzentration						
	Anzahl	Tiere	ort	[mg/kg TM]			
Chlortetracyclin	1	130	Fermenter 4*	n.d.			
Doxycyclin	11	110-330		4.5			
Enrofloxacin	13	9-225		n.d.			
Marbofloxacin	2	6		n.d.			
Tylosin	1	2		n.d.			

⁴: Auslassventil, *: gerührt, TM: Trockenmasse, n.d.: nicht detektiert.

Tab. A20: Fortsetzung.

Probenahme	09.01.2014	09.01.2014					
Antibiotika-Abgaben	08/2013-01	08/2013-01/2014					
Antibiotika	Abo	gaben	Entnahme-	Konzentration			
	Anzahl	Tiere	ort	[mg/kg TM]			
Chlortetracyclin	1	30	Fermenter 4*	n.d.			
			Nachgärer/				
			Endlager 4*	n.d.			
Doxycyclin	21	110-350		8.7			
				11.5			
Enrofloxacin	23	3-200		n.d.			
				n.d.			
Marbofloxacin	11	5-32		n.d.			
				n.d.			

⁴: Probenahme am Auslassventil, ^{*}: gerührt, TM: Trockenmasse, n.d.: nicht detektiert.

Tab. A21: Antibiotika-Abgaben und Rückstände in BGA 5

Schweinehaltung	600 Sauen,	600 Sauen, 3900 Tiere. Güllelagerung: Keller, Silo.				
Biogasanlage	716 kW. Substrat: 30 % Schweinegülle (19 m³/d), 70 % Si-					
	Iomais (30 t	lomais (30 t/d) + Zuckerrübe (8 t/d), im Herbst 2012: Hüh-				
	nertrockenk	ot anstatt Zu	ckerrübe.			
	Fermenter ²	1+2, 1 Endla	ger.			
Probenahme	17.09.2012					
Antibiotika-Abgaben	09/2011 bis	03/2012				
Antibiotika	Abg	aben	Entnahme-	Konzentration		
	Anzahl	Tiere	ort	[mg/kg TM]		
Doxycyclin	k.A.	k.A.	Silo ^{2*}	15.1		
			Keller 1 2*	1.7		
			Keller 2 2*	133		
			Fermenter 1 4*	2.5		
			Fermenter 2 4*	2.2		
			Endlager 4*	3.2		
			Hühnertrocken-			
			kot	n.d.		
Enrofloxacin	k.A.	k.A.		n.d.		
				n.d.		
				n.d.		
				n.d.		
				n.d.		
				n.d.		
				n.d.		

²: Probensonde, ⁴: Auslassventil, ^{*}: gerührt, TM: Trockenmasse, n.d.: nicht detektiert, k.A.: keine Angabe.

Tab. A21: Fortsetzung.

Probenahme	17.09.2012			
Antibiotika-Abgaben	09/2011 bis	03/2012		
Antibiotika	Abg	aben	Entnahme-	Konzentration
	Anzahl	Tiere	ort	[mg/kg TM]
Tylosin	k.A.	k.A.	Silo ^{2*}	n.d.
			Keller 1 2*	6.4
			Keller 2 2*	n.d.
			Fermenter 1 4*	n.d.
			Fermenter 2 4*	n.d.
			Endlager 4*	n.d.
			Hühnertrocken-	
			kot	n.d.

²: Probensonde, ⁴: Auslassventil, ^{*}: gerührt, TM: Trockenmasse, n.d.: nicht detektiert, k.A.: keine Angabe.

Tab. A21: Fortsetzung.

Probenahme	01.03.2013				
Antibiotika-Abgaben	09/2012 bis	02/2013			
Antibiotika	Abgaben Entnahme- Konzentration				
	Anzahl	Tiere	ort	[mg/kg TM]	
Doxycyclin	k.A.	k.A.	Silo ^{2*}	39.6	
			Keller 2*	381	
			Fermenter 1 4*	6.7	
			Fermenter 2 4*	2.5	
			Endlager 4*	7.8	

²: Probensonde, ⁴: Auslassventil, ^{*}: gerührt, TM: Trockenmasse, n.d.: nicht detektiert, k.A.: keine Angabe.

Tab. A22: Antibiotika-Abgaben und Rückstände in BGA 6.

Schweinehaltung	Güllelagerung: Keller und Silo.						
Biogasanlage	1070 kW. Substrat: 30 % Schweinegülle, Bullenmist, Hühnertrockenkot, Silomais, Grünroggen.						
	Fermenter 1+	Fermenter 1+2, Endlager.					
Probenahme	21.09.2012						
Antibiotika-Abgaben	03/2012 bis 0	9/2012					
Antibiotika	Abga	ıben	Entnahme-	Konzentration			
	Anzahl	Tiere	ort	[mg/kg TM]			
Doxycyclin	k.A.	k.A.	Keller ^{2#}	n.d.			
			Silo ^{2*}	n.d.			
			Fermenter 4*	n.d.			
			Nachgärer 4*	n.d.			
			Endlager 4*	2.2			
			Hühner-				
			trockenkot	n.d.			
Tetracyclin	k.A.	k.A.		3.8			
				14.4			
				9.2			
				4.4			
				6.4			
				n.d.			
Enrofloxacin	k.A.	k.A.		n.d.			
				n.d.			
				n.d.			
				n.d.			
				n.d.			
				1.7			

²: Probensonde, ⁴: Auslassventil, ^{*}: gerührt, [#]: ungerührt, TM: Trockenmasse, n.d.: nicht detektiert, k.A.: keine Angabe.

Tab. A22: Fortsetzung.

Probenahme	21.09.2012				
Antibiotika-Abgaben	03/2012 bis 09/2012				
Antibiotika	Abgaben Entnahme- Konzentra				
	Anzahl	Tiere	ort	[mg/kg TM]	
Ciprofloxacin ^M			Keller ^{2#}	n.d.	
			Silo ^{2*}	n.d.	
			Fermenter 4*	n.d.	
			Nachgärer 4*	n.d.	
			Endlager 4*	n.d.	
			Hühner-		
			trockenkot	1.1	

²: Probensonde, ⁴: Auslassventil, ^{*}: gerührt, [#]: ungerührt, ^M: Metabolit von Enrofloxacin, TM: Trockenmasse, n.d.: nicht detektiert.

Tab. A23: Antibiotika-Abgaben und Rückstände in BGA 7

Milchkuhhaltung	Güllelagerung: Keller				
Biogasanlage	500 kW. Substrat für Fermenter 1: Rindergülle (12 m³/d),				
	Silomais (19 t/d) + Futterreste (0.5 t/d) + Mist (gehäckselt,				
	4.4 t/d Substra	t für Ferment	er 2: + Rindergüll	e (40 m³)	
	Fermenter 1, F	ermenter 2 /	Nachgärer, Endla	ger.	
Probenahme	18.09.2012				
Antibiotika-Abgaben	01/2012 bis 09	/2012			
Antibiotika	Abga	ben	Entnahme-	Konzentration	
	Anzahl	Tiere	ort	[mg/kg TM]	
Chlortetracyclin	k.A.	k.A.	Silo ^{2*}	0.4	
			Fermenter 14*	n.d.	
			Fermenter 2 /		
			Nachgärer 4*	n.d.	
			Endlager 4*	n.d.	
Tetracyclin	k.A.	k.A.		0.7	
				0.4	
				0.3	
				0.4	
Enrofloxacin	k.A.	k.A.		n.d.	
				n.d.	
				n.d.	
				n.d.	

²: Probensonde, ⁴: Auslassventil, ^{*}: gerührt, k.A.: keine Angabe, TM: Trockenmasse, n.d.: nicht detektiert.

Tab. A24: Antibiotika-Abgaben und Rückstände in BGA 8.

Schweinehaltung	200 Sauen, 70	200 Sauen, 700-800 Ferkel, Güllelagerung: Keller.					
Biogasanlage	1100 kW. Sub	1100 kW. Substrate: Separierte Güllen (30 m³/d; Rind (4000					
	t/a), Pferd (50	0 t/a), Schwe	ein (700 t/a)), Silor	nais (75 t/d),			
	Ganzpflanzen	silagen (10 t/	d; Gras, Hafer, So	onnenblumen),			
	Fermenter 1+	2, Nachgärer	, Endlager 1+2.				
Probenahme	20.11.2012						
Antibiotika-Abgaben	01/2012 bis 1	1/2012					
Antibiotika	Anwend	dungen	Entnahme-	Konzentration			
	Anzahl	Tiere	ort	[mg/kg TM]			
Sulfadiazin	1	286	Vorgrube ^{2*}	15.0			
Acetyl-Sulfadiazin M				19.0			
Trimethoprim	1	286		0.3			
Doxycyclin	1	429		31.0			
Sulfadiazin			Separation:	22.0			
Acetyl-Sulfadiazin ^M			Flüssigphase	27.0			
Trimethoprim				n.d.			
Doxycyclin				57.0			
Sulfadiazin			Separation:	4.0			
Acetyl-Sulfadiazin M			Festphase	3.8			
Trimethoprim				0.2			
Doxycyclin				31.0			

²: Probensonde, ⁴: Auslassventil, ^{*}: gerührt, ^M: Metabolit von Sulfadiazin, TM: Trockenmasse, n.d.: nicht detektiert.

Tab. A24: Fortsetzung.

Probenahme	20.11.2012	20.11.2012					
Antibiotika-Abgaben	01/2012 bis 1	1/2012					
Antibiotika	Abga	aben	Entnahme-	Konzentration			
	Anzahl	Anzahl Tiere ort [mg/kg					
MIX 1	k.A.	k.A.	Fermenter 1 ^{4*}	n.d.			
			Fermenter 2 ^{4*}	n.d.			
			Nachgärer 4*	n.d.			
			Endlager ^{4*}	n.d.			

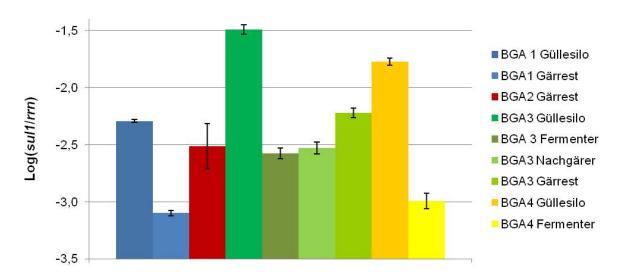
MIX 1: Screening auf 21 Leitsubstanzen, ²: Probensonde, ⁴: Auslassventil, ^{*}: gerührt, TM: Trockenmasse, n.d.: nicht detektiert, k.A.: keine Angabe.

Tab. A24: Fortsetzung.

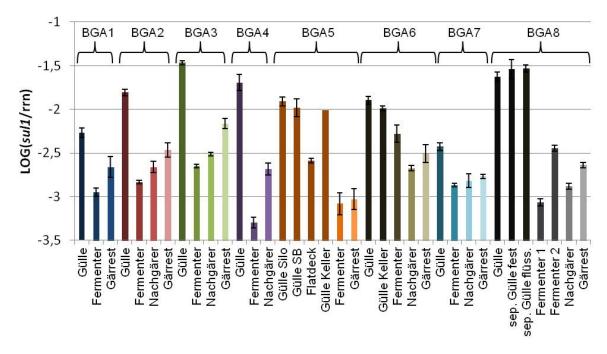
Probenahme	19.09.2013	19.09.2013					
Antibiotika-Abgaben	09/2012 bis 0	3/2013					
Antibiotika	Abga	aben	Entnahme-	Konzentration			
	Anzahl	Tiere	ort	[mg/kg TM]			
Sulfadiazin	k.A.	k.A.	Fermenter 4*	n.d.			
			Endlager 4*	0.4			
Tetracyclin	k.A.	k.A.	Fermenter 4*	n.d.			
			Endlager 4*	0.3			

⁴: Auslassventil, k.A.: keine Angabe, ^{*}: gerührt, TM: Trockenmasse, n.d.: nicht detektiert.

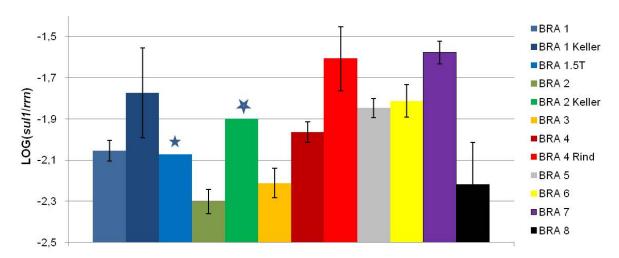
Tab. A25: Antibiotika-Abgaben und Rückstände in BGA 9.


Rinderhaltung						
Biogasanlage	1800 KW. Fer	menter 1 (24.7	7 t/d Mais, 20 m³/	d Gülle mit 4		
	m³ Wasser).					
	Fermenter 1+2	2 (47.6 t/d Mai	s), Nachgärer (1	2.7 t/d Mais),		
	Endlager 1+2.					
Probenahme	01.03.2013					
Antibiotika-Abgaben	09/2012 bis 03	3/2013				
Antibiotika	Anwend	dungen	Entnahme-	Konzentration		
	Anzahl	Tiere	ort	[mg/kg TM]		
MIX 1	k.A.	k.A.	Fermenter 14*	n.d.		
		Fermenter 2 ^{4*} n.d.				
			Nachgärer 4*	n.d.		
			Endlager 4*	n.d.		

⁴: Probenahme am Auslassventil, *: gerührt, k.A.: keine Angabe, TM: Trockenmasse, n.d.: nicht detektiert.


8.2 Bioanalytische Untersuchungen in Praxisbetrieben und Labortests (B)

Quantitative real-time PCR: Antibiotikaresistenzgene


sul1 (vermittelt Resistenz gegen Sulfonamide)

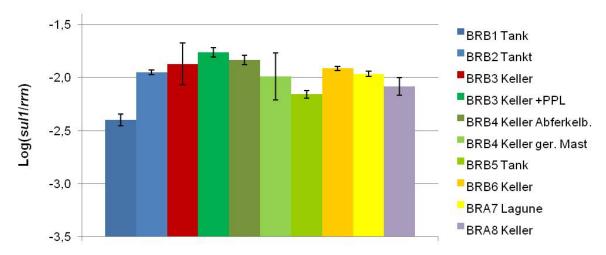
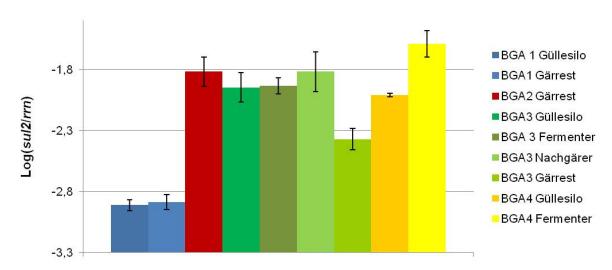
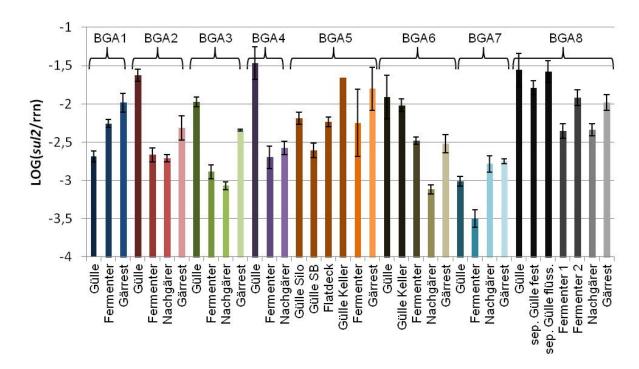
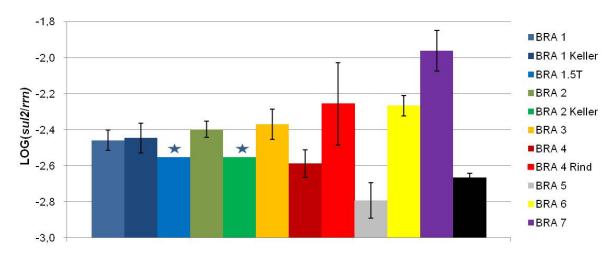

Abb. B1: (BGA1-4, Probenahme Frühjahr 2012) relative Abundanz des Sulfonamid-Resistenzgens *sul1* bezogen auf Anzahl 16S RNA-Genkopien (*rrn*).

Abb. B2: (BGA1-8; Probenahme Herbst 2012) relative Abundanz des Sulfonamid-Resistenzgens *sul1* bezogen auf Anzahl 16S RNA-Genkopien (*rrn*).


Abb. B3: (Gülleproben Beratungsring A, Probenahme Frühjahr 2012) relative Abundanz des Sulfonamid-Resistenzgens *sul1* bezogen auf Anzahl 16S RNA-Genkopien (*rrn*).


Abb. B4: (Gülleproben Beratungsring B, Probenahme Frühjahr 2012) relative Abundanz des Sulfonamid-Resistenzgens *sul1* bezogen auf Anzahl 16S RNA-Genkopien (*rrn*).

In allen untersuchten Güllen und Biogas-Proben konnte **sul1** nachgewiesen werden. Bei beiden Probenahmen wurde in allen BGAs beobachtet, dass die relative Abundanz von **sul1** im Gärrest geringer ist als in der Gülle. Die geringste relative Abundanz ist jeweils im Fermenter zu verzeichnen (mit Ausnahme von BGA 6 Probenahme Herbst 2012), gefolgt von einer leichten Zunahme in den gelagerten Gärresten. Die relative Abundanz von **sul1** in den Gärresten ist mit 10⁻³ immer noch sehr hoch. Dieses entspricht einem von 1000 Bakterien welches dieses Gen trägt. Da zwischen 1,8*10¹¹-1,8*10¹² Bakterien pro Gramm pelletierter Probe enthalten sind (vgl. Abb. B24-B27), bedeutet dieses dass pro Gramm pelletiertem Gärrest immer noch ca. 1,8*10⁸-1,8*10⁹ **sul1**-Kopien enthalten sind.


sul2 (vermittelt Resistenz gegen Sulfonamide)

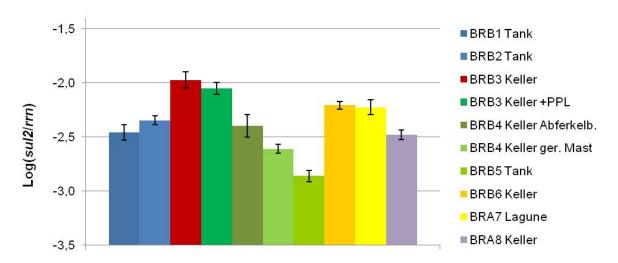

Abb. B5: (BGA1-4, Probenahme Frühjahr 2012) relative Abundanz des Sulfonamid-Resistenzgens *sul2* bezogen auf Anzahl 16S RNA-Genkopien (*rrn*).

Abb. B6: (BGA1-8; Probenahme Herbst 2012) relative Abundanz des Sulfonamid-Resistenzgens *sul2* bezogen auf Anzahl 16S RNA-Genkopien (*rrn*).

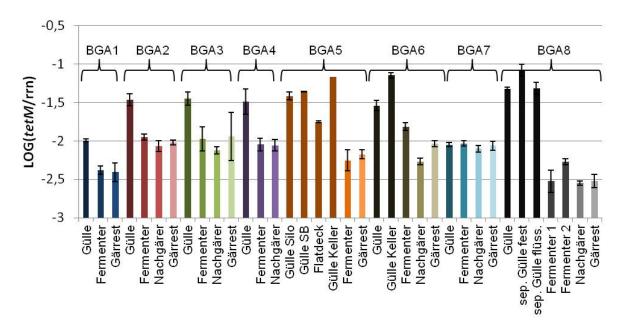

Abb. B7: (Gülleproben Beratungsring A, Probenahme Frühjahr 2012) relative Abundanz des Sulfonamid-Resistenzgens *sul2* bezogen auf Anzahl 16S RNA-Genkopien (*rrn*).

Abb. B8: (Gülleproben Beratungsring B, Probenahme Frühjahr 2012) relative Abundanz des Sulfonamid-Resistenzgens *sul2* bezogen auf Anzahl 16S RNA-Genkopien (*rrn*).

Beim Vergleich der relativen Abundanz von **sul2** in den Gülle-, Fermenter-, Nachgärer- und Gärresteproben lassen sich im Gegensatz zu **sul1** keine Rückschlüsse auf eine Reduktion im Laufe der anaeroben Gärung ziehen. Die relativen Abundanzen von **sul1** und **sul2** liegen in der gleichen Größenordnung (10^{-1,5}-10^{-3,3}).

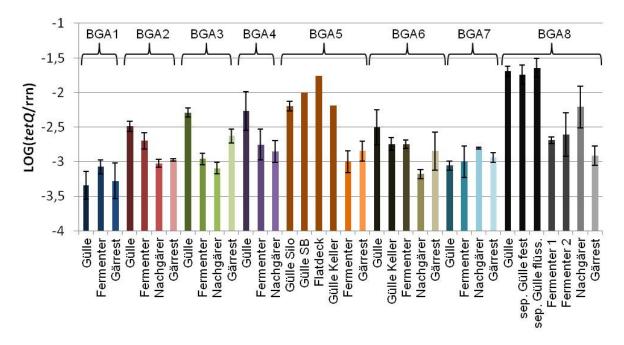

tetM (vermittelt Resistenz gegen Tetrazykline)

Abb. B9: (BGA1-8; Probenahme Herbst 2012) relative Abundanz des Tetrazyklin-Resistenzgens *tetM* bezogen auf Anzahl 16S RNA-Genkopien (*rrn*).

In allen untersuchten Proben von BGAs (Probenahme Herbst2012) konnte **tetM** nachgewiesen werden. Hierbei wurde in allen BGAs beobachtet, dass die relative Abundanz von **tetM** im Gärrest geringer ist als in der Gülle. Die geringste relative Abundanz ist , sofern vorhanden, meist im Nachgärer zu verzeichnen, gefolgt von einer leichten Zunahme in den gelagerten Gärresten. Die relative Abundanz von **tetM** in den Gärresten ist mit ca. 10^{-2,5} immer noch sehr hoch.

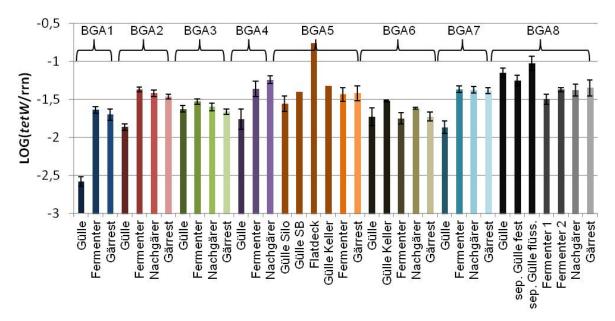
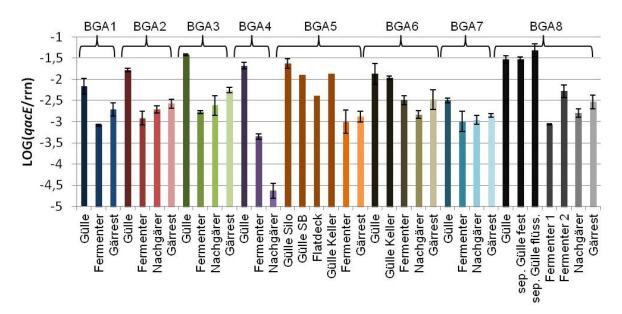

tetQ (vermittelt Resistenz gegen Tetrazykline)

Abb. B10: (BGA1-8; Probenahme Herbst 2012) relative Abundanz des Tetrazyklin-Resistenzgens *tetQ* bezogen auf Anzahl 16S RNA-Genkopien (*rrn*).


In allen untersuchten Proben von BGAs (Probenahme Herbst2012) konnte **tetQ** nachgewiesen werden. Hierbei wurde in der Mehrzahl der BGAs beobachtet, dass die relative Abundanz von **tetQ** im Gärrest geringer ist als in der Gülle (Ausnahmen BGA1 und BGA7). Die relative Abundanz von **tetQ** in den Gärresten ist mit ca. 10⁻³ immer noch sehr hoch.

tetW (vermittelt Resistenz gegen Tetrazykline)

Abb. B11: (BGA1-8; Probenahme Herbst 2012) relative Abundanz des Tetrazyklin-Resistenzgens *tetW* bezogen auf Anzahl 16S RNA-Genkopien (*rrn*).

In allen untersuchten Proben von BGAs (Probenahme Herbst2012) konnte **tetW** nachgewiesen werden. Hierbei wurde im Gegensatz zu den übrigen untersuchten Genen eine Zunahme der relativen Abundanz in den Fermentern der meisten BGAs beobachtet (BGA1, 2, 3 und,7). Die relative Abundanz von **tetW** in den Gärresten ist mit 10^{-1,7} sehr hoch.

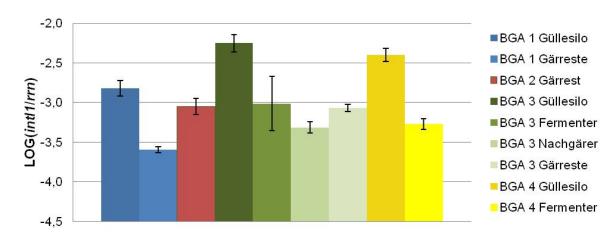
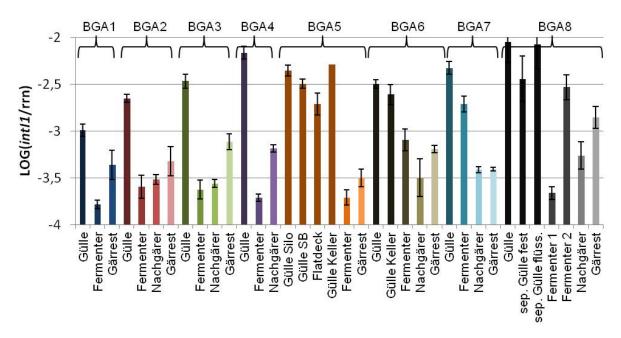

gacE1 (vermittelt Resistenz gegen quaternäre Ammoniumverbindungen)

Abb. B12: (BGA1-8; Probenahme Herbst 2012) relative Abundanz des Resistenzgens $qacE/qacE\Delta1$ bezogen auf Anzahl 16S RNA-Genkopien (rrn).


Alle Proben aus Biogasanlagen enthalten **qacE**\(\Delta\)**1**, welches mit Integrons der Klasse 1 assoziiert ist. Die relativen Abundanzen sind (wie im Falle von **intl1** und **sul1**) in den Gärresten niedriger als in den Gülleproben (die niedrigsten Werte liegen meist im Fermenter vor) und diese steigt in meisten BGAs während der Lagerung wieder leicht an.

Quantitative real-time PCR: mobile genetische Elemente

Integron-spezifische Sequenzen: intl1 (spezifisch für Integrons der Klasse 1)

Abb. B13: (BGA1-4, Probenahme Frühjahr 2012) relative Abundanz des Integrasegens *intl1* bezogen auf Anzahl 16S-Genkopien (*rrn*).

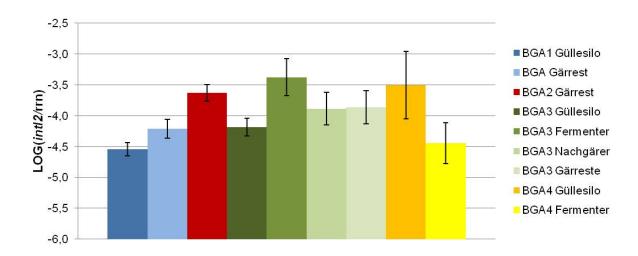
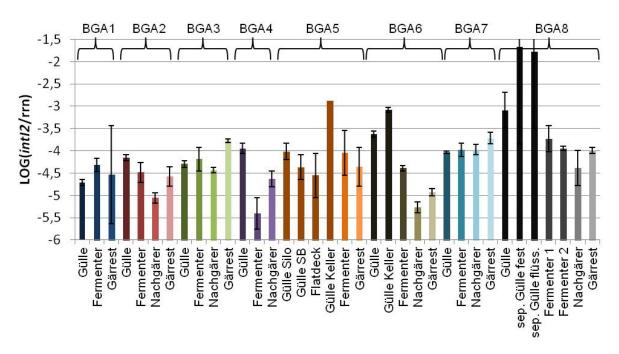
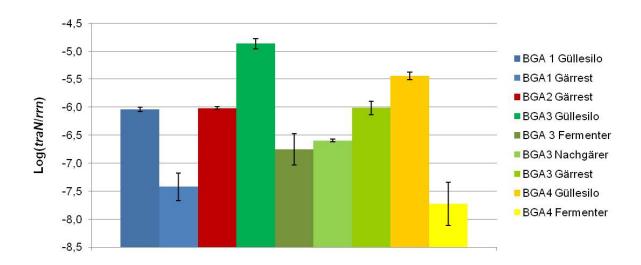


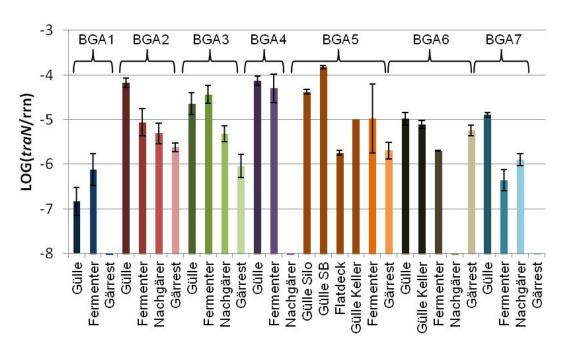
Abb. B14: (BGA1-8; Probenahme Herbst 2012) relative Abundanz des Integrasegens *intl1* bezogen auf Anzahl 16S RNA-Genkopien (*rrn*).


Alle Proben aus Biogasanlagen enthalten das Integrase-Gen **intl1**. Integrons der Klasse 1 beinhalten in ihrer 3'CS **sul1**. Die relativen Abundanzen sind (wie im Falle von **sul1**) in den Gärresten niedriger als in den Gülleproben (die niedrigsten Werte liegen meist im Fermenter vor) und diese steigt in meisten BGAs während der Lagerung wieder leicht an.

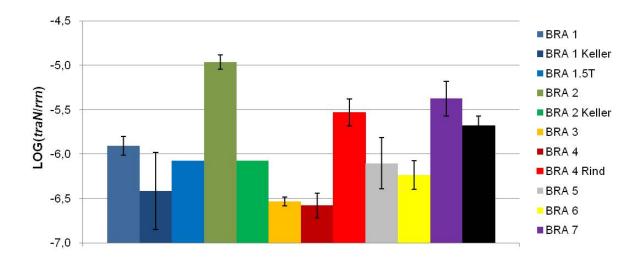
Die relativen Abundanzen von **intl1** in den einzelnen Proben sind deutlich niedriger als die von **sul1** (vgl. Abb. B1-B3), was dafür spricht, dass die detektierten **sul1**-Gene nicht ausschließlich auf Integrons, sondern auch z.B. auf Plasmiden vorliegen.

Integron-spezifische Sequenzen: intl2 (spezifisch für Integrons der Klasse 2)


Abb. B15: (BGA1-4, Probenahme Frühjahr 2012) relative Abundanz des Integrasegens *intl2* bezogen auf Anzahl 16S RNA-Genkopien (*rrn*).


Abb. B16: (BGA1-8; Probenahme Herbst 2012) relative Abundanz des Integrasegens *intl2* bezogen auf Anzahl 16S RNA-Genkopien (*rrn*).

In allen Proben ist **intl2** in geringeren Mengen als **intl1** detektierbar. Es lässt sich kein einheitlicher Effekt der anaeroben Gärung auf die relative Abundanz von **intl2** feststellen (Zunahme in BGA 1 & 7, Abnahme in BGA 2 & 6, keine Änderung während Fermentation in BGA 3).


Plasmid-spezifische Sequenzen: traN (spezifisch für LowGC-Plasmide)

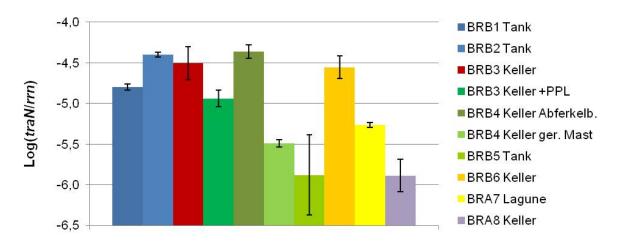

Abb. B17: (BGA1-4, Probenahme Frühjahr 2012) relative Abundanz von *traN* (spezifisch für LowGC-Plasmide) bezogen auf Anzahl 16S RNA-Genkopien (*rrn*).

Abb. B18: (BGA1-7; Probenahme Herbst 2012) relative Abundanz von *traN* (spezifisch für LowGC-Plasmide) bezogen auf Anzahl 16S RNA-Genkopien (*rrn*).

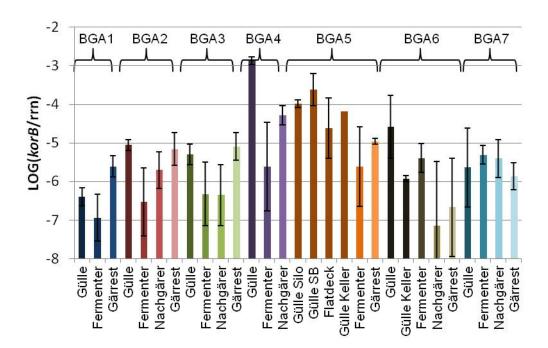

Abb. B19: (Gülleproben Beratungsring A, Probenahme Frühjahr 2012) relative Abundanz von *traN* bezogen auf Anzahl 16S RNA-Genkopien (*rrn*).

Abb. B20: (Gülleproben Beratungsring B, Probenahme Frühjahr 2012) relative Abundanz von *traN* bezogen auf Anzahl 16S RNA-Genkopien (*rrn*).

Die ermittelten Werte der relativen Abundanz von **traN** sind generell sehr niedrig, in den Gärresten einiger BGAs konnte kein **traN** mehr detektiert werden (deshalb nicht in Graphik erfasst). Es lässt sich anhand der Ergebnisse ein Trend zur Reduktion von LowGC-Plasmiden durch die anaerobe mesophile Fermentation erkennen.

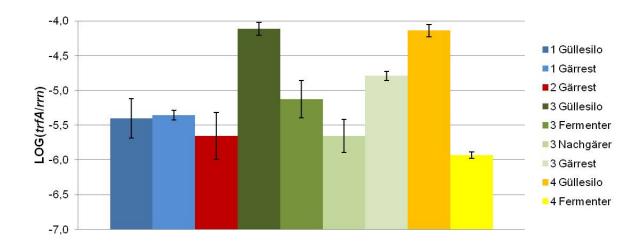
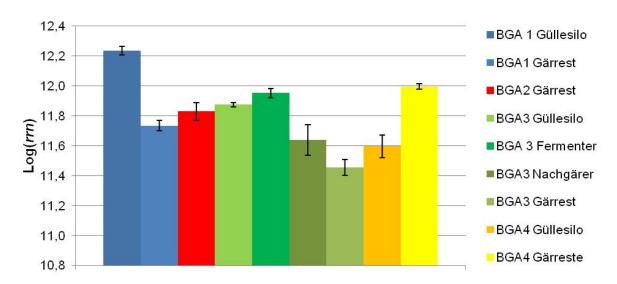
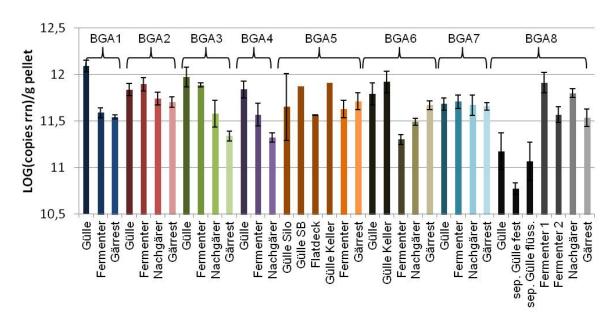

Plasmid-spezifische Sequenzen: korB (spezifisch für IncP-1-Plasmide)

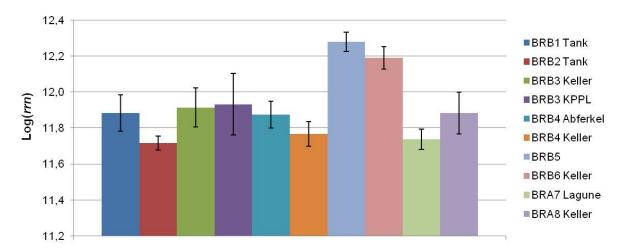
Abb. B21: (BGA1-7; Probenahme Herbst 2012) relative Abundanz von *korB* (spezifisch für IncP-1 -Plasmide) bezogen auf die Anzahl 16S RNA-Genkopien (*rrn*).

Die ermittelten relativen Abundanzen von **korB** in den BGA-Proben sind sehr niedrig (nahe der Detektionsgrenze). In den meisten BGAs lässt sich zunächst eine Abnahme in Fermenter beobachten, aber in den Gärresten steigt die relative Abundanz wieder an und liegt zum Teil sogar höher als in den Güllen. Es erfolgt keine Reduktion von IncP-1-Plasmiden durch die mesophile anaerobe Gärung.


Plasmid-spezifische Sequenzen: *trfA* (spezifisch für IncP-1ε-Plasmide)


Abb. B22: (BGA1-4, Probenahme Frühjahr 2012) relative Abundanz von *trfA* (spezifisch für InP-1ε-Plasmide) bezogen auf Anzahl 16S RNA-Genkopien (*rrn*).

Anmerkung: Da die ermittelten Werte der Mehrzahl der Proben aus Biogasanlagen vom Herbst 2012 für *trfA* unterhalb der Detektionsgrenze lagen entfiel die grafische Auswertung.


Quantitative real-time PCR: Bestimmung 16S RNA-Genkopien

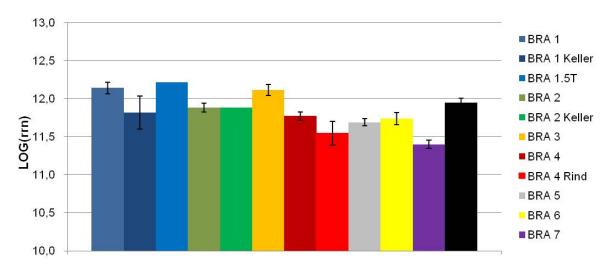

Abb. B24: (BGA1-4, Probenahme Frühjahr 2012) rRNA Genkopien (*rrn*) pro Gramm pelletierter Probe.

Abb. B25: (BGA1-8; Probenahme Herbst 2012) Anzahl rRNA Genkopien (*rrn*) pro Gramm pelletierter Probe.

Abb. B26: (Gülleproben aus Beratungsring B; Probenahme Frühjahr 2012) Anzahl 16S rRNA Genkopien (*rrn*) pro Gramm pelletierter Probe.

Abb. B27: (Gülleproben aus Beratungsring A; Probenahme Frühjahr 2012) Anzahl 16S rRNA Genkopien (*rrn*) pro Gramm pelletierter Probe.

Hybridisierung Southern Blots:

Antibiotikaresistenzgene und Resistenzgene gegen quaternäres Ammonium

Tab. B1: BGA 1,2 & 4 (Probenahme Frühjahr 2012). Nachweis von Antibiotikaresistenz-genen (*sul1*, *sul2* gegen Sulfonamide, *tetA* gegen Tetracycline) und *qacE*Δ1 (Resistenz gegen quaternäre Ammoniumverbindungen) mittels PCR, Southern Blot und anschließender Hybridisierung mit spezifischen Sonden. (-: kein Signal, +: Signal, ++: starkes Signal, +++: sehr starkes Signal, (+): nach langer Exposition sehr schwaches Signal)

Probe	sul1	sul2	sul3	tetA	qacE∆1*
BGA1 Gülle 1	+++	+++	-	+++	++
2	+++	+++	-	+++	+++
3	+++	+++	-	+++	+++
4	+++	+++	-	+++	+++
BGA 1 Gärrest 1	+++	+++	-	++	++
2	+++	+++	-	++	++
3	+++	+++	-	++	+++
4	+++	+++	-	++	+++
BGA2 Gärrest 1	+++	+++	-	+++	+++
2	+++	+++	-	+++	+++
3	+++	+++	-	+++	+++
BGA4 Gülle 1	+++	+++	(+)	+++	++
2	+++	+++	-	+++	++
3	+++	+++	(+)	+++	+++
4	+++	+++	-	+++	+++
BGA4 Fermenter 1	+++	+++	+	+++	+++
2	+++	+++	+	+++	+++
3	+++	+++	-	+++	+++
	+++	+++	-	+++	+++

Tab. B2: BGA 3 (Probenahme Frühjahr 2012). Nachweis von Antibiotikaresistenzgenen (*sul1*, *sul2* gegen Sulfonamide, *tetA* gegen Tetrazykline) und *qacE*Δ1 (Resistenz gegen quaternäre Ammoniumverbindungen) mittels PCR, Southern Blot und anschließender Hybridisierung mit spezifischen Sonden.(-: kein Signal, +: Signal, ++: starkes Signal, +++: sehr starkes Signal, (+): nach langer Exposition sehr schwaches Signal)

Probe	sul1	sul2	sul3	tetA	qacE∆1*
BGA3 Gülle 1	+++	+++	-	+++	+++
2	+++	+++	(+)	+++	+++
3	+++	+++	+	+++	+++
4	+++	+++	(+)	+++	+++
BGA3 Fermenter 1	+++	+++	(+)	+++	+++
2	+++	+++	(+)	+++	+++
3	+++	+++	(+)	+++	+++
BGA3 Nachgärer 1	+++	+++	-	+++	+++
2	+++	+++	-	+++	++
3	+++	+++	(+)	+++	++
BGA3 Gärrest 1	+++	+++	(+)	+++	++
2	+++	+++	+	+++	++
3	+++	+++	+	+++	++
4	+++	+++	+	+++	+++

Tab. B3: BGA1-8 (Probenahme Herbst 2012). Nachweis von *qacE*Δ1 und *qacE* (Resistenz gegen quaternäre Ammoniumverbindungen) und Antibiotikaresistenzgenen (*sul1*, *sul2*, *sul3* gegen Sulfonamide, *tetA*, *tetM*, *tetX* gegen Tetrazykline) mittels PCR, Southern Blot und anschließender Hybridisierung mit spezifischen Sonden. n=4 .(-: kein Signal, +: Signal, ++: starkes Signal, +++: sehr starkes Signal)

BGA	Quelle	sul1	sul2	sul3	tetA	tetM	tetX	qacE	qacE∆1
1	Gärrest	+++	+++	-	+++	++	+++	-	+++
2	Gärrest	+++	+++	-	+++	++	+++	-	+++
3	Gülle	+++	+++	+	+++	++	+++	-	+++
	Fermenter	+++	+++	(+)	+++	++	+++	-	+++
	Gärrest	+++	+++	(+)	+++	++	+++	-	+++
4	Nachg./Gärrest	+++	+++	(+)	+++	++	+++	-	+++
5	Gärrest	+++	+++	-	+++	++	+++	-	+++
6	Gärrest	+++	+++	-	+++	++	+++	-	+++
7	Gärrest	+++	+++	-	+++	++	+++	-	+++
8	Gärrest	+++	+++	-	++	++	+++	-	++

Tab. B4: Gülleproben Beratungsring A (Probenahme Frühjahr 2012). Nachweis von Antibiotikaresistenzgenen (*sul1*, *sul2* und *sul3* gegen Sulfonamide) mittels PCR, Southern Blot und anschließender Hybridisierung mit spezifischen Sonden. (-: kein Signal, +: Signal, ++: starkes Signal, ++: sehr starkes Signal, (+): nach langer Exposition sehr schwaches Signal)

sample	sul1	sul2	sul3
BRA11	++	+++	(+)
2	++	+++	(+)
3	++	+++	180
4	++	+++	-
BRA1 Keller 1	++	+++	(2.
2	++	+++	+
3	++	+++	(+)
4	++	+++	-
BRA1.5 Tank	++	+++	(+)
BRA21	++	+++	(=.
2	++	+++	(+)
3	++	+++	-
4	++	+++	(+)
BRA2 Keller	++	+++	+
BRA31	++	++	+
2	++	++	-
3	++	++	
4	++	++	(+)
BRA41	++	++	-
2	++	++	-
3	++	++	1=1
4	++	++	(=)
BRA4 Rind 1	++	++	(=)
2	++	++	-
3	++	++	
4	++	++	
BRA5 1	++	++	(+)
2	++	++	
3 4	+++	++	-
BRA6 1	+++	++	-
2	+++	+++	+
3	+++	+++	1-1
4	+++	+++	
BRA71	+++	+++	100
2	+++	+++	-
3 4	+++	+++	
			(1)
BRA81	+++	+++	(+)
2 3	+++	++	(+)
4	+++	++	(+) (+)
.4			7.7

Tab. B5: Gülleproben aus Beratungsringen A und B (Probenahme Herbst 2012). Nachweis von Antibiotikaresistenzgenen (*sul1*, *sul2*, *sul3*, *tetA*, *tetM und tetX*) und *qacE*Δ1 mittels PCR, Southern Blot und anschließender Hybridisierung mit spezifischen Sonden. (-: kein Signal, +: Signal, ++: starkes Signal, +++: sehr starkes Signal, (+): nach langer Exposition sehr schwaches Signal)

Betrieb	sul1	sul2	sul3	tetA	tetM	tetX	qacE	qacE∆1
BRA1	+++	+++	-	+++	+++	++	-	+++
BRA2	+++	+++	-	+++	+++	++	-	+++
BRA3	+++	+++	-	+++	+++	++	-	+++
BRA4	+++	+++	-	+++	+++	++	-	+++
BRA5	+++	+++	-	++	+	++	-	+++
BRA6	+++	+++	-	+++	++	++	-	+++
BRA7	+++	+++	-	++	+	++	-	+++
BRA8	+++	+++	-	+++	++	++	-	+++
BRB2	+++	+++	-	+++	++	++	-	+++
BRB3								
Keller	+++	+++	-	+++	++	++	(+)	+++
Silo	+++	+++	-	+++	+	++	-	+++
BRB4								
Ferkel	+++	+++	-	+++	++	++	-	+++
Mast	+++	+++	-	+++	++	++	-	+++
BRB5								
Silo a	+++	+++	-	+++	++	++	-	++
Silo b	+++	+++	-	+++	++	++	-	+++
BRB7	+++	+++	-	+++	++	++	-	+++
BRB8	+++	+++	-	+++	+++	++	-	+++

In allen BGA Proben aus dem Frühjahr 2012 und Herbst 2012 konnten mit dieser semiquantitativen Methode starke Abundanzen der Antibiotikaresistenzgene sul1, sul2, tetA, tetX und
von qacE\(\Delta\)1 (Resistenz gegen quaternäres Ammonium, assoziiert mit klinischen Klasse 1 Integrons) nachgewiesen werden. Ebenso konnte in allen BGA Proben aus der Herbstprobenahme
das Tetrazyklin-Resistenzgen tetM gefunden werden. In keiner der BGA-Proben aus dem Herbst
2012 konnte das vollständige Gen qacE detektiert werden. sul3 wurde in wesentlich geringerem
Maße als sul1 und sul2 in den BGAs 3 und 4 nachgewiesen.

Zusätzlich konnten in allen untersuchten Güllen aus den Beratungsringen A und B **sul1** und **sul2** nachgewiesen werden. **sul3** wurde in wesentlich geringerem Maße als sul1 und sul2 in allen Höfen der Probenahme aus dem Frühjahr 2012 außer BRA 4 und 7 detektiert. In keiner der Güllen aus BRB und BRA aus der Probenahme vom Herbst 2012 wurde **sul3** nachgewiesen. Des Weiteren wurden in allen Gülleproben aus dem Herbst 2012 die Tetrazyklin-Resistenzgene tetA, tetM und tetX sowie qacE Δ 1 detektiert.

Plasmidspezifische Sequenzen

Tab. B6: BGA 1,2 & 4 (Probenahme Frühjahr 2012). Nachweis Plasmid-spezifischer Sequenzen mittels PCR, Southern Blot und anschließender Hybridisierung mit spezifischen Sonden. (-: kein Signal, +: Signal, ++: starkes Signal, +++: sehr starkes Signal, (+): nach langer Exposition sehr schwaches Signal, ?: nicht auswertbar)

Incgroup	IncU	IncP-1(all subgroups)	IncQ	IncW	IncN
BGA1 Gülle 1 2 3 4	+++ +++ +++	+++ +++ +++ +++	+++ +++ +++	+ ++ + +	
BGA 1 Gärrest 1 2 3 4	(+) (+) -	++ ++ ++ ++	++ ++ ++ ++	+ + + + +	
BGA2 Gärrest 1 2 3	-	+++ +++ +++	+++ +++ +++	+ + + +	
BGA4 Gülle 1 2 3 4	- ++ - ++	+++ +++ +++ +++	++ ++ ++ +++	+ + + + +	
BGA4 Fermenter 1 2 3	?	++ ++ +	+++ +++ +++	+ + +	-

Tab. B7: BGA 3 (Probenahme Frühjahr 2012). Nachweis Plasmid-spezifischer Sequenzen mittels PCR, Southern Blot und anschließender Hybridisierung mit spezifischen Sonden.

(-: kein Signal, +: Signal, ++: starkes Signal, +++: sehr starkes Signal)

Incgroup	IncU	IncP-1(all subgroups)	IncQ	IncW	IncN
BGA3 Gülle 1	-	+++	+++	+++	-
2	E	+++	+++	+++	-
3	-	+++	+++	+++	-
4	++	+++	+++	+++	1-
BGA3 Fermenter 1	-	++	++	+	1-
2	-	++	++	+	(-
3	++	++	++	+	-
BGA3 Nachgärer 1	-	+	++	+	:-
2	÷	+	++	+	-
3	-	+	++	+	-
BGA3 Gärrest 1	-		++	++	-
2	-	++	++	+++	-
3	2	++	++	+++	12
4	-	++	+++	+++	-

Tab. B8: Gülleproben Beratungsring A (Probenahme Frühjahr 2012). Nachweis Plasmid-spezifischer Sequenzen mittels PCR, Southern Blot und anschließender Hybridisierung mit spezifischen Sonden. (-: kein Signal, +: Signal, ++: starkes Signal, +++: sehr starkes Signal, n.d.: nicht untersucht, ?: nicht auswertbar)

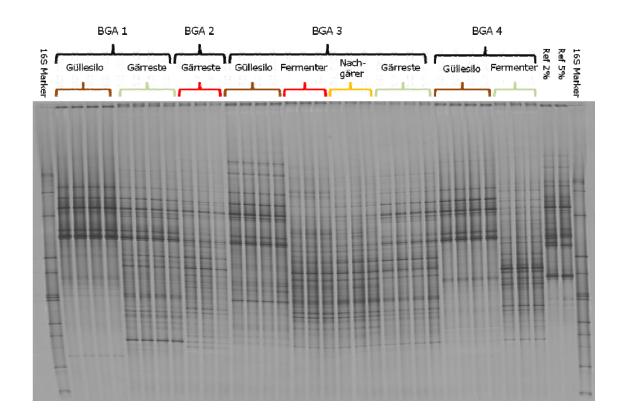
Betrieb, Ort der	IncU	IncP- $1_{(\alpha,\beta,\epsilon)}$	IncQ
Probenahme			
1	-	+++	+++
1 Keller	-	++	+++
1 Tank	?	+++	+++
2	-	++	+++
2 Keller	++	++	+++
3	+	++	+++
4	-	+	+++
4 +Rindergülle	-	+	+++.
5	-	+	+++
6	+	+	+++
7 Keller	-	++	+++
7 Lagune	-	+	+
8 Keller	+	++	+++
8 Keller, Bei-	-	+	+
pass			

Tab. B9: Gülleproben Beratungsring B (Probenahme Frühjahr 2012). Nachweis Plasmidspezifischer Sequenzen mittels PCR, Southern Blot und anschließender Hybridisierung mit spezifischen Sonden. (-: kein Signal, +: Signal, ++: starkes Signal, +++: sehr starkes Signal)

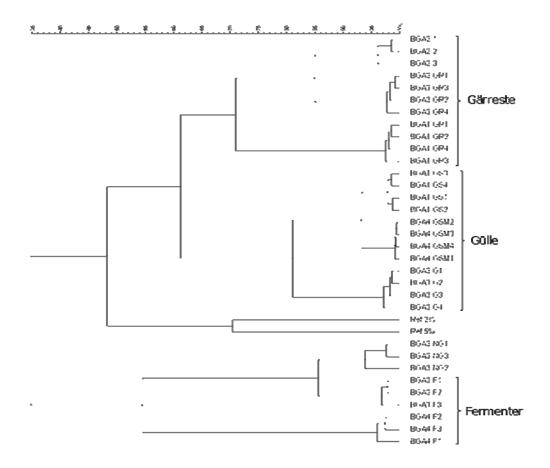
Betrieb, Ort der Pro-	IncU	IncP- $1_{(\alpha,\beta,\epsilon)}$	IncQ
benahme			
1	++	+	++
2	+	++	+++
3	++	++	+++
3 + PPL	++	++	++
4	++	++	++
4 Abferkelbereich	-	+	++
5	++	+	++
6	+	++	++

Tab. B10: BGA1-8 (Probenahme Herbst 2012). Nachweis Plasmid-spezifischer Sequenzen und Integrons der Klasse 1 (*intl1*) und 2 (*intl2*) mittels PCR, Southern Blot und anschließender Hybridisierung mit spezifischen Sonden. (-: kein Signal, +: Signal, ++: starkes Signal, +++: sehr starkes Signal

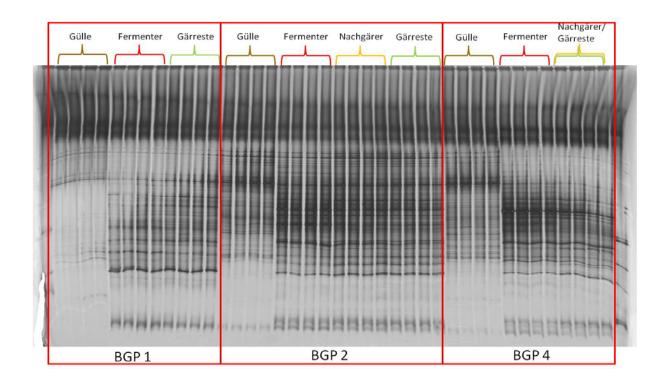
BGA	Quelle	IncN	IncP-1	IncQ	IncW	LowGC	intl1	intl2
1	Gärrest	-	+	+++	+++	-	+++	+++
2	Gärrest	-	+	+++	+++	++	+++	+++
3	Gülle	+	++	+++	+++	++	+++	+++
	Fermenter	-	+	+++	+++	++	+++	+++
	Gärrest	(+)	+	+++	+++	-	+++	+++
4	Nachg./Gärrest	-	+	+++	+++	-	+++	+++
5	Gärrest	-	(+)	+++	+++	(+)	+++	+++
6	Gärrest	-	(+)	+++	+++	+	+++	+++
7	Gärrest	-	-	+++	+++	-	+++	+++
8	Gärrest	-	(+)	+++	+++	-	+++	+++

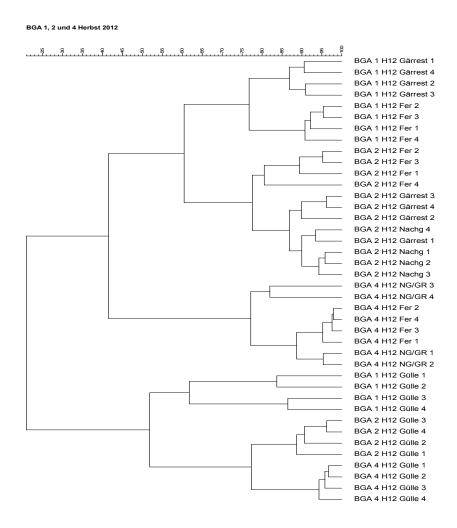

Tab. B11: Gülleproben aus Beratungsringen A und B (Probenahme Herbst 2012). Nachweis Plasmid-spezifischer Sequenzen und integrons der Klasse 1 und 2 mittels PCR, Southern Blot und anschließender Hybridisierung mit spezifischen Sonden. (-: kein Signal, +: Signal, ++: starkes Signal, +++: sehr starkes Signal)

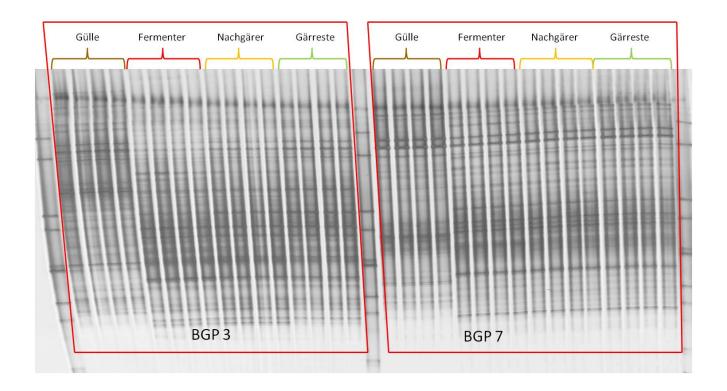
Betrieb	IncN	IncP-1	IncQ	IncW	LowGC	IncU	intl1	intl2
BRA1	-	++	+++	-	-	-	+++	+++
BRA2	-	++	+++	+++	-	-	+++	+++
BRA3	-	++	+++	++	-	-	+++	+++
BRA4	-	++	+++	-	-	-	+++	+++
BRA5	-	+	+	-	-	-	+++	+++
BRA6	-	++	+++	-	-	-	+++	+++
BRA7	-	++	+	-	-	+++	+++	+++
BRA8	-	++	+++	+++	-	+++	+++	+++
BRB2	+	++	+++	+++	+	+++	+++	+++
BRB3								
Keller	-	++	+++	+++	-	+++	+++	+++
Silo	+	++	+++	+++	-	+++	+++	+++
BRB4								
Ferkel	-	++	+++	+++	-	-	+++	+++
Mast	+	++	+++	++	-	+	+++	+++
BRB5								
Silo a	+	++	+++	-	-	+	+++	+++
Silo b	+	++	+++	++	-	++	+++	+++
BRB7	++	++	+++	++	-	-	+++	+++
BRB8	+	++	+++	+++	-	-	+++	+++

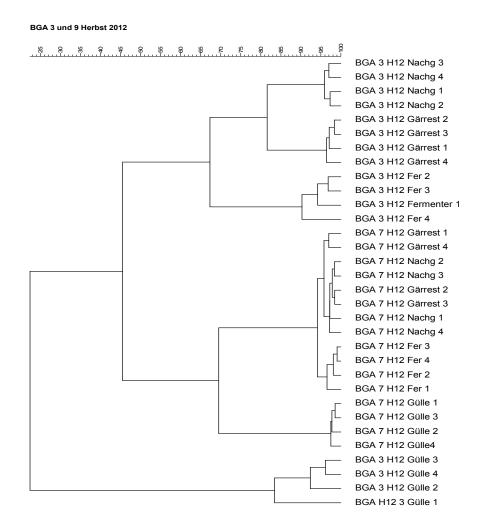

In fast allen BGA-Proben aus dem Frühjahr 2012 und dem Herbst 2012 konnten Plasmide mit einem breiten (IncP-1-und IncQ-Plasmide) oder mittleren Wirtsspektrum (IncW) nachgewiesen werden (Ausnahme BGA7 Herbst 2012). Diese sind zum Teil in der Lage selbstständig von einem Wirtsbakterium auf ein anderes zu springen (konjugative IncP-1 und IncW-Plasmide) oder lassen sich unter Anwesenheit von konjugativen Plasmiden mobilisieren (IncQ) und sind somit ebenfalls in der Lage in neue Wirtszellen zu gelangen. Desweiteren wurden in allen BGAs mit Ausnahme von BGA 2 IncU-Plasmide detektiert, welche konjugativ sind und mit Integrons der Klasse 1 assoziiert sind. IncN-Plasmide wurden ausschließlich in BGA3 nachgewiesen.

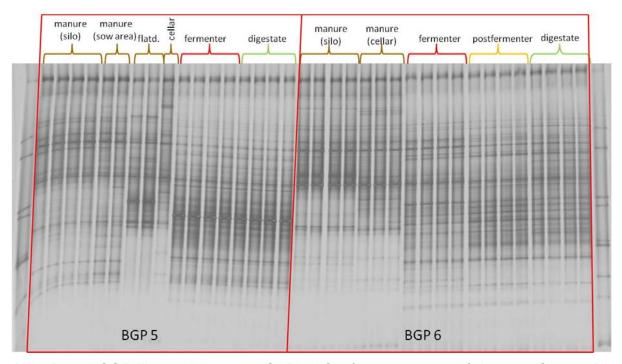
Zusätzlich konnten in allen Güllen aus den Beratungsringen A und B IncP-1-Plasmide detektiert werden, sowie in vielen Proben IncU-, IncW-, IncN und IncQ-Plasmide. LowGC-Plasmide konnten nur in einer Gülleprobe aus der Herbstprobenahme 2012 aus dem Beratungsring B nachgewiesen werden. Des Weiteren wurden in allen Proben aus dem Herbst 2012 die Integrase-Gene intl1 und intl2 detektiert (spezifisch für Integrons der Klasse 1 und 2).


Ergebnisse Denaturierende Gradienten Gelelektrophorese (DGGE)


Abb. B28: DGGE-Fingerprints von 16S rRNA-Genfragmenten amplifiziert aus Gesamt-DNA aus BGAs 1-4 (Probenahme Frühjahr 2012).


Abb. B29: UPGMA basierend auf DGGE-Analyse von 16S-rRNA Fragmenten amplifiziert aus Gesamt- DNA von Proben aus BGAs 1-4 (Probenahme Frühjahr 2012).


Abb. B30: DGGE-Fingerprints von 16S rRNA-Genfragmenten amplifiziert aus Gesamt-DNA aus BGAs 1,2 & 4 (Probenahme Herbst 2012).


Abb. B31: UPGMA basierend auf DGGE-Analyse von 16S-rRNA Fragmenten amplifiziert aus Gesamt- DNA von Proben aus BGAs 1, 2 & 4 (Probenahme Herbst 2012).

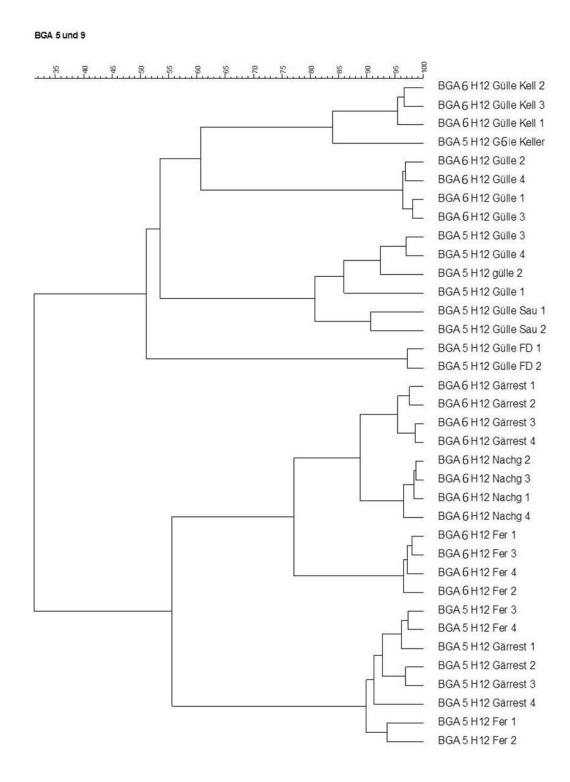

Abb. B32: DGGE-Fingerprints von 16S rRNA-Genfragmenten amplifiziert aus Gesamt-DNA aus BGAs 3 & 7 (Probenahme Herbst 2012).

Abb. B33: UPGMA basierend auf DGGE-Analyse von 16S-rRNA Fragmenten amplifiziert aus Gesamt- DNA von Proben aus BGAs 3 & 7 (Probenahme Herbst 2012).

Abb. B34: DGGE-Fingerprints von 16S rRNA-Genfragmenten amplifiziert aus Gesamt-DNA aus BGAs 5 & 6 (Probenahme Herbst 2012).

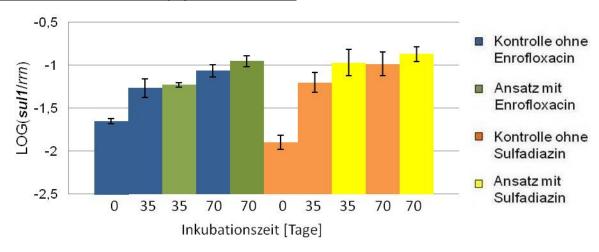
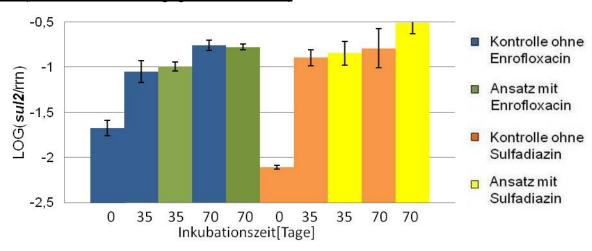
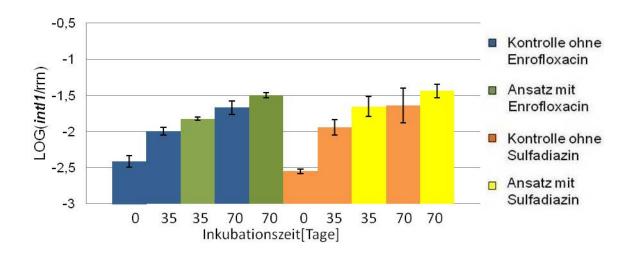


Abb. B35: UPGMA basierend auf DGGE-Analyse von 16S-rRNA Fragmenten amplifiziert aus Gesamt- DNA von Proben aus BGAs 5 & 6 (Probenahme Herbst 2012).

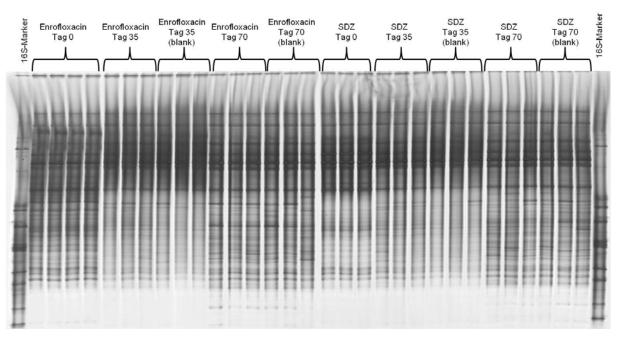
Ergebnisse Abbautest:


Quantitative real-time PCR:

sul1 (vermittelt Resistenz gegen Sulfonamide)


Abb. B36: Abbautests von Enrofloxacin und Sulfadiazin in Schweinegülle: relative Abundanz des Sufonamid-Resistenzgens *sul1* bezogen auf Anzahl 16S RNA-Genkopien (*rrn*) im Laufe der Inkubationzeit.

sul2 (vermittelt Resistenz gegen Sulfonamide)


Abb. B37: Abbautests von Enrofloxacin und Sulfadiazin in Schweinegülle: relative Abundanz des Sufonamid-Resistenzgens *sul2* bezogen auf Anzahl 16S RNA-Genkopien (*rrn*) im Laufe der Inkubationzeit.

Integron-spezifische Sequenzen: intl1 (spezifisch für Integrons der Klasse 1)

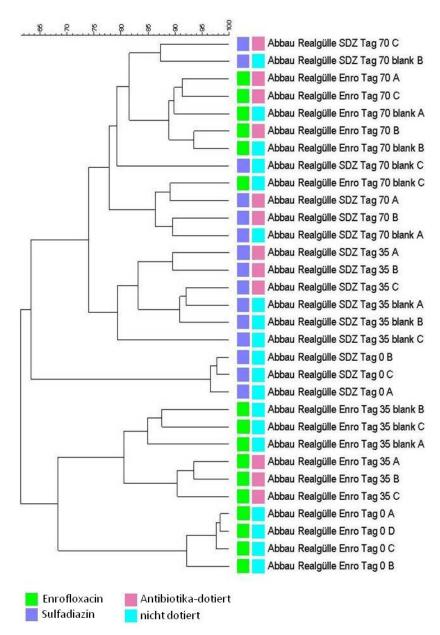


Abb. B38: Abbautests von Enrofloxacin und Sulfadiazin in Schweinegülle: relative Abundanz des Sufonamid-Resistenzgens *intl1* bezogen auf Anzahl 16S RNA-Genkopien (*rrn*) im Laufe der Inkubationzeit.

Denaturierende Gradienten Gelelektrophorese (DGGE):

Abb. B39: DGGE-Fingerprints von 16S rRNA-Genfragmenten amplifiziert aus Gesamt-DNA aus Proben der Abbautests von Enrofloxacin und Sulfadiazin in Schweinegülle.

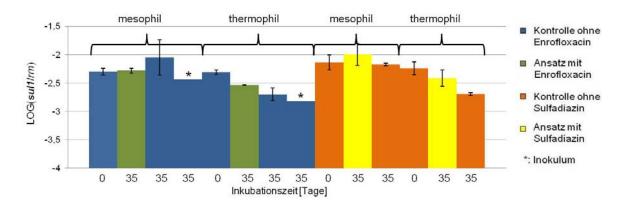
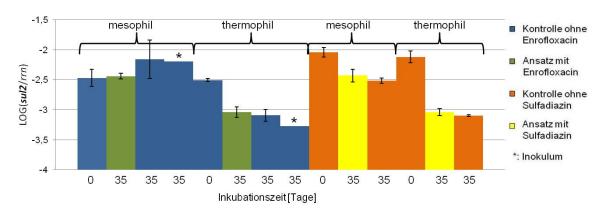
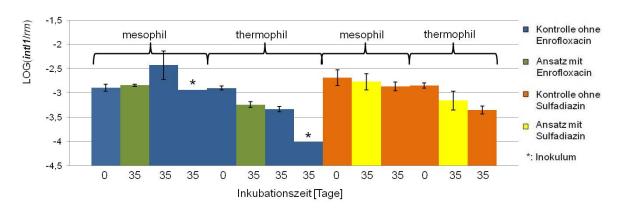


Abb. B40: UPGMA basierend auf DGGE-Analyse von 16S-rRNA Fragmenten amplifiziert aus Gesamt- DNA aus Proben der Abbautests von Enrofloxacin und Sulfadiazin in Schweinegülle.

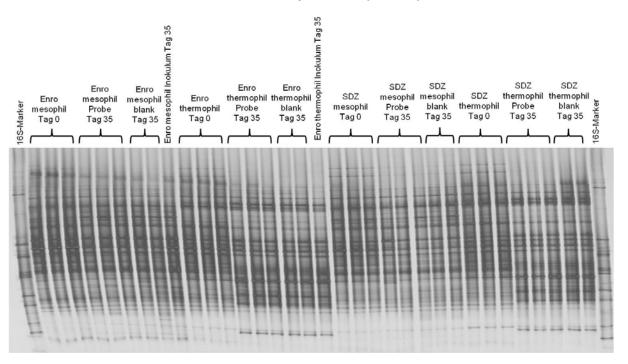
Ergebnisse Gärtests (mesophil und thermophil):


Quantitative real-time PCR:

sul1 (vermittelt Resistenz gegen Sulfonamide)


Abb. B41: Gärtest mesophil (40°C) und thermophil (55°C): relative Abundanz des Sufonamid-Resistenzgens *sul1* bezogen auf Anzahl 16S RNA-Genkopien (*rrn*) im Laufe der Inkubationzeit.

sul2 (vermittelt Resistenz gegen Sulfonamide)


Abb. B42: Gärtest mesophil (40°C) und thermophil (55°C): relative Abundanz des Sufonamid-Resistenzgens *sul2* bezogen auf Anzahl 16S RNA-Genkopien (*rrn*) im Laufe der Inkubationzeit.

Integron-spezifische Sequenzen: intl1 (spezifisch für Integrons der Klasse 1)

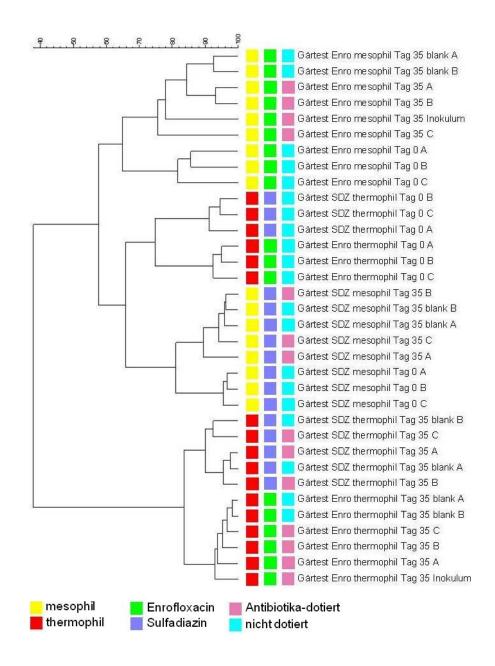
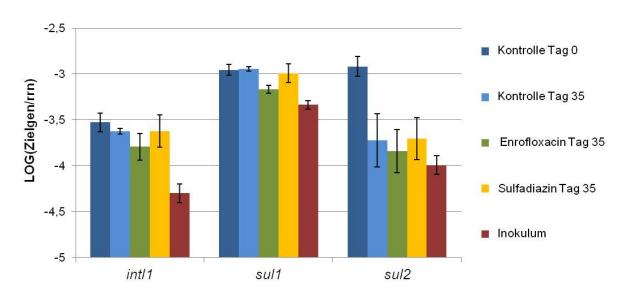
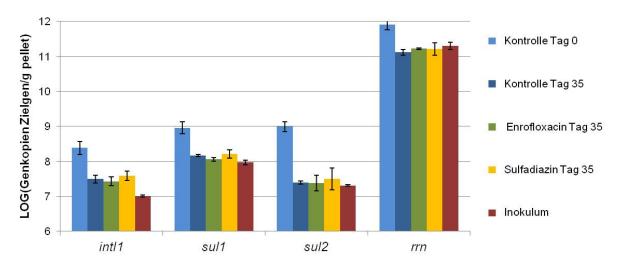


Abb. B43: Gärtest mesophil (40°C) und thermophil (55°C): relative Abundanz des Integrasegens *intl1* bezogen auf Anzahl 16S RNA-Genkopien (*rrn*) im Laufe der Inkubationzeit.

Denaturierende Gradienten Gelelektrophorese (DGGE):


Abb. B44: DGGE-Fingerprints von 16S rRNA-Genfragmenten amplifiziert aus Gesamt-DNA aus Proben der Gärtests durchgeführt bei 40°C (mesophil) und 55°C (thermophil).


Abb. B45: UPGMA basierend auf DGGE-Analyse von 16S-rRNA Fragmenten amplifiziert aus Gesamt- DNA aus Proben der Gärtests durchgeführt bei 40°C (mesophil) und 55°C (thermophil).

Ergebnisse Gärtests (extrem thermophil):

Quantitative real-time PCR:

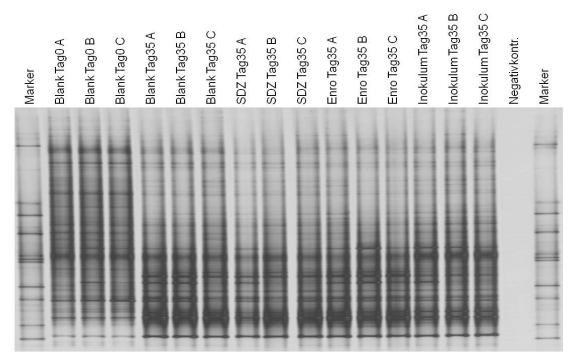


Abb. B46: Gärtest extrem thermophil (70°C): relative Abundanzen der Sufonamid-Resistenzgene *sul1* und *sul2* sowie des Integrasegens *intl1* bezogen auf Anzahl 16S RNA-Genkopien (*rrn*) im Laufe der Inkubationzeit.

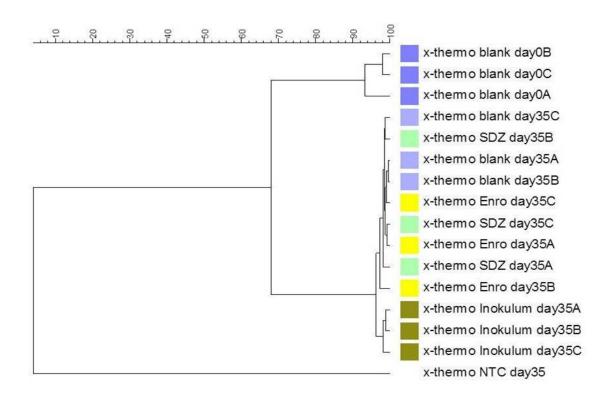


Abb. B47: Gärtest extrem thermophil (70°C): absolute Abundanzen der Sufonamid-Resistenzgene *sul1* und *sul2* sowie des Integrasegens *intl1* bezogen auf Anzahl 16S RNA-Genkopien (*rrn*) im Laufe der Inkubationzeit.

Denaturierende Gradienten Gelelektrophorese (DGGE):

Abb. B48: DGGE-Fingerprints von 16S rRNA-Genfragmenten amplifiziert aus Gesamt-DNA aus Proben des Gärtests durchgeführt bei 70°C (extrem thermophil).

Abb. B49: UPGMA basierend auf DGGE-Analyse von 16S-rRNA Fragmenten amplifiziert aus Gesamt- DNA aus Proben der Gärtests durchgeführt bei 70°C (extrem thermophil).

BGA2 auf Plasmide unterschiedlicher Inkompatibilitätsgruppen (IncP-1, IncQ, IncW, LowGC, IncP-9, IncP-7 und IncN), Integrons der Klasse 1 (Integrasegen 1, *intl1*), Integrongenkassetten und Überprüfung des Rezpienten (+ = positiv, - = negativ, n.a. = nicht analysiert) Tab. B12: Ergebnisse des PCR- und qPCR- screenings der Pseudomonas putida -Transkonjuganten (TK) aus Gärresten der BGA1 &

		Bestätigung	D																
		des															Integrase	rase	
TKNr.	BGA	TKNr. BGA Rezipienten	ç	n Su	IncP-1		DcQ	й	IncW		B-Typ	IncP-9 IncP-7 IncN	IncP-7	IncN	Integrons	S	Gen1	n1	intl1
			PCR	Hybr.	PCR	PCR				B-Typ	(LowGC)				Größe			Restr.	
		BOX- PCR	R IncP-1	IncP-1	IncP-1e	IncP-1	PCR	PCR		(LowGC)	PCR				Haupt-	Hybr.		Verdau	
			P Misch	alpha	(trfA)	(korB)	(oriV)	(oriV) (oriV)	Hybr.	PCR	(traN)	PCR	PCR	PCR	PCR produkt PCR	aadA	PCR	Hybr.	qPCR
Ps.1	_	+ n.a.	1	n.a.	n.a.	n.a.	100	E	n.a.		n.a.	118		ı	ı	n.a.	n.a.	n.a.	r
Ps.2	_	+ n.a	r.	n.a.	n.a.	n.a.	r	c	n.a.	·	n.a.		ı	L		n.a.	n.a.	n.a.	ri
Ps.3		n.a. n.a		n.a.	n.a.	n.a.		e	n.a.		n.a.		ı	ı	ij	n.a.	n.a.	n.a.	ī
Ps.4	_	n.a. n.a		n.a.	n.a.	n.a.		I.	n.a.	i	n.a.		ı	ı	ij	n.a.	n.a.	n.a.	ľ
Ps.5	_	n.a. n.a	1	n.a.	n.a.	n.a.	1	3	n.a.	1	n.a.	•	1	1	1	n.a.	n.a.	n.a.	1
Ps.6	-	n.a. n.a		n.a.	n.a.	n.a.	1		n.a.	1	n.a.	1	1	1	1	n.a.	n.a.	n.a.	1
Ps.7	~	n.a. n.a	1	n.a.	n.a.	n.a.		ā	n.a.		n.a.	ū	,	1	•	n.a.	n.a.	n.a.	1
Ps.8	_	n.a. n.a	1	n.a.	n.a.	n.a.		a	n.a.	•	n.a.		1	1	•	n.a.	n.a.	n.a.	1
Ps.9	-	n.a. n.a	4	n.a.	n.a.	n.a.	5	a	n.a.	9	n.a.		1	1	ì	n.a.	n.a.	n.a.	ā
Ps.10	-	n.a. n.a	1	n.a.	n.a.	n.a.		31	n.a.	3	n.a.	3		,	1	n.a.	n.a.	n.a.	я
Ps.26	2	n.a. n.a	+	n.a.	+	n.a.	1	3	n.a.	1	•		ì	ı	~1000bp	+	n.a.	n.a.	+
Ps.28	7	+ n.a	+	n.a.	+	n.a.	ì	σ	n.a.	•	•		ì	ì	~1600bp	+	n.a.	n.a.	+
															~1600bp+				
Ps.29	7	+ n.a	+	n.a.	+	n.a.	Ī	T)	n.a.		1)	1	1	1	2200bp	+	n.a.	n.a.	+
Ps.30	7	+ n.a.	+	n.a.	+	n.a.	-	r.	n.a.	•	E	328	1	ı	~1000bp	+	n.a.	n.a.	+
Ps.31	7	+ n.a.	+	n.a.	+	n.a.		r.	n.a.		1g	Es		1	~1000bp	+	n.a.	n.a.	r
Ps.32	7	+ n.a	+	n.a.	+	n.a.		C	n.a.		19			ı	~1000bp	+	n.a.	n.a.	+
Ps.33	7	+ n.a	+	n.a.	+	n.a.		E	n.a.		I is		ı	ı	~1000bp	+	n.a.	n.a.	+
Ps.34	7	n.a. n.a	1	n.a	n.a.	n.a.	•	1	n.a.	n.a.	n.a.	•	1	n.a.	1	n.a.	n.a.	n.a.	1
Ps.35	7	n.a. n.a	+	n.a.	+	n.a.	1	3.	n.a.	1		1	1	1	~1000bp	+	n.a.	n.a.	+

BGA5 auf Plasmide unterschiedlicher Inkompatibilitätsgruppen (IncP-1, IncQ, IncW, LowGC, IncP-9, IncP-7 und IncN), Integrons der Klasse 1 (Integrasegen 1, *intl1*), Integrongenkassetten und Überprüfung des Rezpienten (+ = positiv, - = negativ, n.a. = nicht analysiert) Tab. B13: Ergebnisse des PCR- und qPCR- screenings der Pseudomonas putida -Transkonjuganten (TK) aus Gärresten der BGA4 &

	200	_	-	~				1.0				124	0-										
	Intl1			qPCR	n.a.	+	9		313	+	+	1	•	+									
Integrase	Gen1	Restr.	Verdau	Hybr.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n a									
Inte	Ŏ			PCR	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.									
	w	8 358	Hybr.	aadA	n.a.	+	(+)5	n.a.	n.a.	+	+	n.a.	n.a.	+									
	Integrons	Größe	Haupt-	PCR produkt PCR	,	1	•	1	ı	•	ľ	ľ	ľ	ı	~1600bp	ı	1	ı	~1600bp	~1600bp	1	1	~1000bp
2	ncN			PCR	1	1		1	ı		ı	ı	1	L	L	ı	1	1		•	1	1	•
r c	lncP-/			PCR	1	1	1		i	ı	ı	ı	ı		ı	C	•		,	,	ı	ī	
C	IncP-9 IncP-/ IncN			PCR	,		•	•			ı	•		E	n.d.	E.			n.d.	n.d.			0.0
		(LowGC)	qPCR	(traN)		•	•	•		•			1	•		n.a.	n.a.	n.a.			n.a.	n.a.	
		B-Typ ((LowGC)	PCR	n.a.	1	r			1	1	1	1	1									
	<u> </u>			Hybr.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	na G									
-	IncW		PCR	(oriV)		ì	1	1	1	ı	ı	ı	ı	Ľ	ı	L	ı	1	1		1	ı	•
(gou		PCR	(oriV)	,	9	1	1			ı	•	ı	c	•	C		1	1	1	3	1	(1
	(qPCR	IncP-1	(korB)	1	1	1	1	ī	1				r	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	D.a.
,		qPCR	IncP-1e	(trfA)	n.a.	+	n.a.	n.a.	n.a.	+	+	n.a.	n.a.	+									
2	ပ	Hybr.	IncP-1	alpha	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.									
		PCR	IncP-1	Misch	n.a.	+	L	•	•	+	+	1	•	+									
gung	enten		PCR	GFP	+	+	+	+	+	+	+	+	+	+	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Bestätigung des	BGA Rezipienten		BOX-	PCR	+	+	+	+	+	+	+	+	+	+	+	n.a.	n.a.	n.a.	+	+	n.a.	n.a.	+
Č	BGA				4	4	4	4	4	4	4	4	4	4	2	2	2	5	2	2	2	2	2
	Ž Ž				Ps.76	Ps.77	Ps.78	Ps.80	Ps.89	Ps.93	Ps.94	Ps.95	Ps.99	Ps.100	Ps.101	Ps.102	Ps.103	Ps.105	Ps.106	Ps.107	Ps.108	Ps.109	Ps.110

Tab. B14: Ergebnisse des PCR- und aPCR- screenings der Pseudomonas putida -Transkonjuganten (TK) aus Gärresten der BGA7 &

Ø	2					-																				_
SGA/ Klass	22		intl1			aPCR.	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+
n der E) (1)	Integrase	Gen1		Restr.	Verdau Hybr.	n.a.		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.						
resten	nalysie	Integ	Ğ			PCR	n.a.	n.a.	п.а.	n.a.	n.a.	n.a.	n.a.		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
IS Gar	icht ar		SI			Hybr. aadA	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+
Tab. B14. Ergebnisse des Port- und qPort- screenings der <i>Pseudomonas puilda</i> –Transkonjuganten (TK) aus Garresten der BGA/ & BGA6 auf Discuida unterschiedlicher Inkompatibilitätschungen (IncD-1 IncD-1 IncD-1 IncD-2 IncD-7 und IncN) Internos der Klasse	(Integrasegen 1, <i>intl</i> 1), Integrongenkassetten und Überprüfung des Rezpienten (+ = positiv, - = negativ, n.a. = nicht analysiert)		Integrons	Größe	Haupt-	produkt PCR	~2200bp	~1600bp+	2200bp	~2200bp	~1100bp	~2200bp	~1100bp	~2200bp	~1100bp	~2200bp	~1100bp	~2200bp	~2200bp	~2200bp						
anten	gativ	1	Z			PCR	```	```	```	∵	`i	```	```	7	-	∵	`≀	`?` 	`≀	`≀`	`≀	```	`≀ 	`≀`	```	```
gn(uo	2 "		Nou L-					22	_	-	23	- 50	10				_		NI.	N.	<i>2</i> 2		•	-	20	<i>(ii)</i>
ransk T	sitiv,		IncP-9 IncP-7			PCR	-	1	*	•	-	ı	1		1	1	1	1	_	_	'	_	_	_	-	•
	+ = po		IncP-			PCR	1	1	•	1	•	١	ı		1	1	'n		1	1	1	•	•	•		
as pund	ienten (B-Typ	(LowGC)	qPCR (traN)	1		1		¥.		ı		1	1	1		1		1	1			ľ	•
udomon	es Rezp				B-Typ	(LowGC) PCR	1		•	•		•	1		1	1	5		•	1	.1		•	•		•
TSe	ung d		3			Hybr.	n.a.		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.						
gs de	erprüf		IncW			PCR (oriV)	•	3			ı	ı	r			303	a	-	•		1	•				r
eenin	d Ub		DcQ			PCR (oriV)				1	1	F	1		1	1	1	1	i	ı	•	1			ı	•
א- SCI onatibil	tten ur				qPCR	IncP-1 (korB)		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
and aproper	enkasse		P-1			lncP-1e (<i>trfA</i>)		+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+
י - אכן לפוופני	grong		IncP-1			IncP-1 alpha	n.a.	n.a.	п.а.	n.a.	n.a.	n.a.	n.a.		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
des protections	7), Inte					IncP-1 Misch	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+
DNISS	1, intl	igung	enten			PCR GFP	n.a.		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.						
Place	egen	Bestätigung des	Rezipi			BOX-	+	+	n.a.	n.a.	n.a.	n.a.	n.a.		+	n.a.	+	+	+	+	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
6 14	gras		BGA				7	7	7	7	7	7	7	1000	7	7	9	9	9	9	9	9	9	9	9	9
lab. BG∆6	1 (Inte		TKNr. BGA Rezipienten				Ps.127	Ps.128	Ps.129	Ps.130	Ps.131	Ps.132	Ps.133	200000000000000000000000000000000000000	Ps.134	Ps.135	Ps.151	Ps.152	Ps.153	Ps.154	Ps.155	Ps.156	Ps.157	Ps.158	Ps.159	Ps.160
			**				-	_		-	-	1000		- 8	_	-	-	_	-	_	-	-	_	_	-	-

Tab. B15: Pseudomonas putida-Transkonjuganten (TK) aus Gärresten von BGA1, BGA2 & BGA4. Nachweis von Antibiotikaresistenzgenen (tetA, tetM, tetX und tetO gegen Tetrazykline) und $qacE\Delta 1$ (Resistenz gegen quaternäre Ammoniumverbindungen) mittels PCR und qPCR. (+ = positiv, - = negativ, n.a. = nicht analysiert)

)	20	8		10	1	2	2 8
TKNr.	BGA	tetA PCR	tetM PCR	tetQ PCR	tetX PCR	tetO PCR	qacEall qPCR
Ps.1	1	-	-	-	-	1.5	-
Ps.2	1	-	_	9	_	_	_
Ps.3	1	-	-	-	-	-	_
Ps.4	1	420	-	<u>=</u>	<u> </u>	327	-
Ps.5	1	120	_	2	-	127	_
Ps.6	1	(2)	-	122	4	127	_
Ps.7	1	128	-	<u>=</u>	_	194	=
Ps.8	1	120	-	<u> </u>	_	(SE)	-
Ps.9	1	₩.	-	-	<u>=</u> :	: = 1	-
Ps.10	1	-		-	_	:=:	-
Ps.26	2	+	n.a.	n.a.	n.a.	n.a.	+
Ps.28	2	+	n.a.	n.a.	n.a.	n.a.	+
Ps.29	2	+	n.a.	n.a.	n.a.	n.a.	+
Ps.30	2	+	n.a.	n.a.	n.a.	n.a.	+
Ps.31	2 2 2 2 2	+	n.a.	n.a.	n.a.	n.a.	+
Ps.32		+	n.a.	n.a.	n.a.	n.a.	+
Ps.33	2	+	n.a.	n.a.	n.a.	n.a.	+
Ps.34	2	55	-			953	n.a.
Ps.35	2	+	n.a.	n.a.	n.a.	n.a.	+
Ps.76	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Ps.77	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Ps.78	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Ps.80	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Ps.89	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Ps.93	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Ps.94	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Ps.95	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Ps.99	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Ps.100	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.

Tab. B16: *Pseudomonas putida*-Transkonjuganten (TK) aus Gärresten von BGA3. Nachweis von Antibiotikaresistenzgenen (tetA, tetM, tetQ, tetW, und tetX gegen Tetrazykline) mittels PCR und qPCR. (+ = positiv, - = negativ, n.a. = nicht analysiert)

TK Nr.	BGA	tetA	tetM	tetX	tet0	tetQ	tetW
		PCR	PCR	PCR	PCR	qPCR	qPCF
Ps.51	3	-	-	-	-	-	-
Ps.52	3	(5)	-	-	-	15.51	(-)
Ps.53	3	(+)	-	-	-	-	100
Ps.54	3	720	-	-2	2	-	127
Ps.55	3	100	-	-5	-		9 5 8
Ps.56	3	(=1	-	-	-	1.m	-
Ps.57	3	0 = 3	-	-	-	-	-
Ps.59	3	-	-	-	9	-	-
Ps.61	3	()	-		,	S=1	
Ps.62	3	(+)	-	-	-	-	100
Ps.63	3	(2)	-	4	<u>=</u>	227	(<u>=</u>)
Ps.64	3	1 - 1	-5	-5	-	75	11 5 1
Ps.65	3	(=1	: <u>-</u>	-	-	0 = 0	:=:
Ps.66	3	(=)	-	-	=	6=	-
Ps.67	3	323	2	2	2	-	127
Ps.68	3	(-	-		5	SE:	10.00
Ps.69	3	(#)	-	-	-		(+)
Ps.70	3	5 2 5	=	<u>u</u>	<u> </u>	22	(s <u>=</u>)
Ps.71	3	-	-	2	8	-	-
Ps.72	3	(=1	-	-	-	-	-
Ps.73	3	(# 3	12	-	-	1.M	-
Ps.74	3	123	- 2	4	2	344	127
Ps.75	3	. . .	_	-	_	-	0 5 4

Tab. B17: Pseudomonas putida-Transkonjuganten (TK) aus Gärresten von BGA5, BGA7 & BGA6. Nachweis von Antibiotikaresistenzgenen (tetA, tetM, tetQ, tetX und tetO gegen Tetrazykline) und $qacE\Delta1$ (Resistenz gegen quaternäre Ammoniumverbindungen) mittels PCR und qPCR. (+ = positiv, - = negativ, n.a. = nicht analysiert)

TK Nr.	BGA	tetA	tetM	tetQ	tetX	tetO	qacEall
		PCR	PCR	PCR	PCR	PCR	qPCR
Ps.101	5	+	n.a.	n.a.	n.a.	n.a.	+
Ps.102	5	2	125	-	120	22	=
Ps.103	5	2	-	-	-	23 <u>=</u> 7	2
Ps.105	5	₩:	(¥ 0	-	-	(t) = 7	<u>-</u>
Ps.106	5	+	n.a.	n.a.	n.a.	n.a.	+
Ps.107	5	+	n.a.	n.a.	n.a.	n.a.	+
Ps.108	5	-	(=)	-	-3	5:-	-
Ps.109	5	-	:=::	-	-	S=3	-
Ps.110	5	+	n.a.	n.a.	n.a.	n.a.	+
Ps.127	7	+	n.a.	n.a.	n.a.	n.a.	+
Ps.128	7	+	n.a.	n.a.	n.a.	n.a.	+
Ps.129	7	+	n.a.	n.a.	n.a.	n.a.	+
Ps.130	7	+	n.a.	n.a.	n.a.	n.a.	- 1
Ps.131	7	+	n.a.	n.a.	n.a.	n.a.	+
Ps.132	7	+	n.a.	n.a.	n.a.	n.a.	+
Ps.133	7	+	n.a.	n.a.	n.a.	n.a.	+
Ps.134	7	+	n.a.	n.a.	n.a.	n.a.	+
Ps.135	7	+	n.a.	n.a.	n.a.	n.a.	+
Ps.151	6	+	n.a.	n.a.	n.a.	n.a.	+
Ps.152	6	+	n.a.	n.a.	n.a.	n.a.	+
Ps.153	6	+	n.a.	n.a.	n.a.	n.a.	+
Ps.154	6	+	n.a.	n.a.	n.a.	n.a.	+
Ps.155	6	+	n.a.	n.a.	n.a.	n.a.	+
Ps.156	6	+	n.a.	n.a.	n.a.	n.a.	+
Ps.157	6	+	n.a.	n.a.	n.a.	n.a.	+
Ps.158	6	+	n.a.	n.a.	n.a.	n.a.	+
Ps.159	6	+	n.a.	n.a.	n.a.	n.a.	+
Ps.160	6	+	n.a.	n.a.	n.a.	n.a.	+

unterschiedlicher Inkompatibilitätsgruppen (IncP-1, IncQ, IncW, LowGC, IncP-9, IncP-7 und IncN), Integrons der Klasse 1 (Integrasegen 1, intl1), Integrongenkassetten und Überprüfung des Rezpienten (+ = positiv, - = negativ, n.a. = nicht analysiert) Tab. B18: Ergebnisse des PCR- und qPCR- screenings der Escherichia coli-Transkonjuganten (TK) aus Gärresten der BGA1 auf Plasmide

				550		10001				100			800			100				100
		Bestätigung des	tigung ss						×.									Integ	Integrase	
TK N.	BGA	TKNr. BGA Rezipienten	enten		<u>u</u>	IncP-1		DcO	Ĕ	IncW		T.Y	IncP-9 IncP-7	IncP-7	NcN	Integrons Größe	ns	Gen1	Ē	intl1
				PCR	Hybr.	aPCR	qPCR				B-Typ	(LowGC)				Haupt-			Restr.	
		BOX-	PCR	IncP-1	IncP-1	4		PCR	PCR		(LowGC)	qPCR				produkt	Hybr		Verdau	
		PCR	GFP	Misch	alpha	(trfA)	(korB)	(oriV)	(oriV)	Hybr.	PCR	(traN)	PCR	PCR	PCR	PCR	aadA	PCR	Hybr.	qPCR
E.1	_	+	+	1	n.a.	•	n.a.	ì	ŧ	ŧ	•	n.a.	n.a.	n.a.	1	•	•	1	1	n.a.
E.2	-	+	+	1	n.a.	1	n.a.		ŧ	£		n.a.	n.a.	n.a.	1	•	1		1	n.a.
Е.З	τ-	+	+	ī	n.a.	1	n.a.	ī	ŧ	ŧ	1	n.a.	n.a.	n.a.	•	1000	+	+	+	n.a.
E.4	_	+	+	•	n.a.	•	n.a.		£	ŧ	•	n.a.	n.a.	n.a.				•		n.a.
E.5	<u>-</u>	+	+	ŀ	n.a.		n.a.	ľ	ŧ	ŧ		n.a.	n.a.	n.a.		•	ı	ı	1	n.a.
E .6	_	+	+	ı	n.a.		n.a.	ľ	ŧ	ŧ		n.a.	n.a.	n.a.	1	1000	+	+	+	n.a.
E.7	_	+	+	ì	n.a.	•	n.a.	ı	£	ŧ	ı	n.a.	n.a.	n.a.	ı	E	E	ı	r	n.a.
В. В.	-	+	+	ı	n.a.	r	n.a.	ı	£	ŧ	•	n.a.	n.a.	n.a.	1	•	ľ	r	r	n.a.
6 <u>.</u> Ш	_	+	+	+		+	n.a.	L	ŧ	£	·	n.a.	L		·	2200	+	+	+	n.a.
E.10	_	+	+	+		+	n.a.	ı	ŧ	ŧ	ı	n.a.	t		ľ	2200	+	+	+	n.a.
E.11	_	n.a.	+	۷.	n.a.	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
E.12	_	n.a.	+	+	n.a	+	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
E.13	_	n.a.	+	+	n.a.	+	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
E.14	_	n.a.	+	+	n.a.	+	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
E.16	~	n.a.	+	+	n.a.	+	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	п.а.	n.a.	n.a.	n.a.	n.a.
E.17	_	n.a.	+	+	n.a.	+	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
E.19	_	n.a.	+	۷.	n.a.		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
E.21	_	n.a.	+	+	n.a.	+	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
E.22	_	n.a.	+	+	n.a.	+	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	п.а.	n.a.	n.a.	n.a.	n.a.
E.23	τ-	n.a.	+	٥.	n.a.	•	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
E.25	_	n.a.	+	خ	n.a.		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.

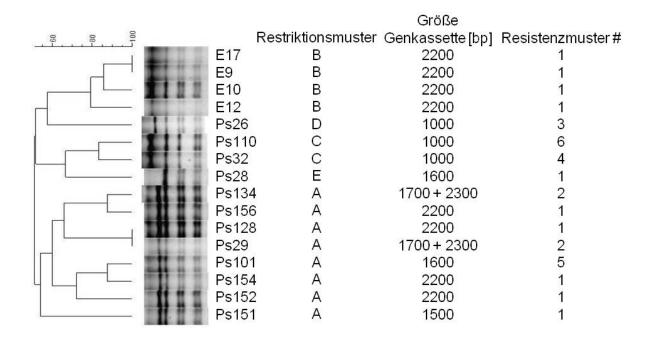
Tab. B19: Ergebnisse des PCR- und qPCR- screenings der Escherichia coli-Transkonjuganten (TK) aus Gärresten der BGA2 & BGA5 auf Plasmide unterschiedlicher Inkompatibilitätsgruppen (IncP-1, IncQ, IncW, LowGC, IncP-9, IncP-7 und IncN), Integrons der Klasse 1 (Integrassegen 1, intl 1), Integrongenkassetten und Überprüfung des Rezpienten (+ = bositiv - = negativ n.g. = nicht analysiert)

					_	_												_										_
		int/1			qPCR	n.a.	n.a.	n.a.	n.a.	n.a.		n.a.	n.a.	n.a.		n.a.		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Integrase	n1	Restr.	Verdau	Hybr.	n.a.	n.a.	n.a.	n.a.	n.a.		n.a.	n.a.	n.a.		n.a.		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
(Left)	Integ	Gen1			PCR	+	ı	+	ī	L		+	1	•		+		+	+	ľ	ŧ	1	1	9	,	1	1	
anaiys		s		Hybr.	aadA	+	ı	+	ē	r		+		ī				+	+	+	L	1	1	9		1	i	
Oberpruiung des Rezpienten (+ = positiv, - = negativ, n.a. = nicht analysiert)		Integrons	Größe	Hanbt-	produkt PCR	2000	2600	1000	1000	1000	2000,1000,	(200)	2500,(200)	1000	2000,1000,	(200)	2000,1000,	(200)	(1700),500	(1700),500	(1700),500	(1700),500	(1700),500	(1700),500	(1700),500	1000,(2000)	400	400
Jauv, r		IncN			PCR		ı	ı	ı	I.		,	,			ı			ı	ľ	ı	1		ı	,	n.a.		
) = = = = = = = = = = = = = = = = = = =					PCR	n.a.	n.a.	n.a.	n.a.	n.a.		n.a.	n.a.	n.a.		n.a.		n.a.	ı	ı	r:	1	•					
, OSIIIV,		IncP-9 IncP-7			PCR	n.a.	n.a.	n.a.	n.a.	n.a.		n.a.	n.a.	n.a.		n.a.		n.a.			ľ	ı	1			1		
1 = +) Han		B-Typ	(LowGC)	9PCR	(traN)	n.a.	n.a.	n.a.	n.a.	n.a.		1	n.a.	n.a.		n.a.		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.				
uerbien			B-Typ	(LowGC)	PCR	•	•		ı	ı		+	1			•				ľ	ľ	1	1	•	(+)	(+)5	(+)5	(+)
d des		IncW			Hybr.	n.a.	n.a.	n.a.	n.a.	n.a.		n.a.	n.a.	n.a.		n.a.		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
ımını		luc		PCR	(oriV)		ı		ı	L		1	1	1		1		-		ı	ľ	1	1	9	1	n.a.	1	•
COC		Inco		PCR	(oriV)			r	r	ı		1	1	ì		1		r		•	í.	1	1	1	•	n.a.	1	
			qPCR	IncP-1	(korB)	n.a.	n.a.	n.a.	n.a.	n.a.		n.a.	n.a.	n.a.		n.a.		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
asselle		-1	qPCR	IncP-1e	(trfA)	n.a.	n.a.	n.a.	n.a.	n.a.		n.a.	n.a.	n.a.		n.a.		n.a.			ľ	1	1	9	•			
oligera		IncP-1	Hybr.	IncP-1	alpha	n.a.	n.a.	n.a.	n.a.	n.a.		n.a.	n.a.	n.a.		n.a.		n.a.	+	+	+	+	+	+	+	n.d.	+	+
(Integrasegen 1, <i>Intr1</i>), integrongenkassetten und			PCR	IncP-1	Misch					r		3		•				•	+	+	+	+	+	+	+	•	+	+
, mu 1)	Bestätigung des	ienten		PCR	GFP	n.a.	n.a.	n.a.	n.a.	n.a.		n.a.	n.a.	n.a.		n.a.		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
gen	Bestä	TKNr. BGA Rezipienten		BOX-	PCR	ı	ı	ı	ï	ı		1	1	1		•			ı	1	L	1	T	1	1	1	1	•
Jase		BGA				2	7	7	7	7		0	7	7		7		5	2	വ	വ	2	വ	2	2	2	വ	2
		TKNr.				E.26	E.27	E.28	E.29	E.30		E.31	E.32	E.33		E.34		E.35	E.76	E.77	E.78	E.79	E.80	E.81	E.82	E.83	E.84	E.85

Tab. B20: Ergebnisse des PCR- und qPCR- screenings der Escherichia coli-Transkonjuganten (TK) aus Gärresten der BGA3 auf Plasmide unterschiedlicher Inkompatibilitätsgruppen (IncP-1, IncQ, IncW, LowGC, IncP-9, IncP-7 und IncN), Integrons der Klasse 1 (Integrasegen 1, intf1), Integrongenkassetten und Überprüfung des Rezpienten (+ = positiv, - = negativ, n.a. = nicht analysiert)

						0000	_																					
	3	intl1				qPCR	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Integrase	n1		Restr.	/erdau	Hybr.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	Integ	Gen1				PCR	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
		SL			Hybr.	aadA	•	E	r ₃	E3	n.a.	n.a.	n.a.	+	n.a.	+	+	n.a.	(1)	1								
		Integrons	Größe	Haupt-	produkt	PCR	•	ľ	i.	ı	q	1	1	2500, 3000	1	2500, 3000	2500, 3000	1	ı	ī	Ē	ī	r	T.	I	I	n e	1
	(Co.)	ncN				PCR		Ľ	C.		1	1	ā	ā	1	1		1	1		T	ľ	L	Ľ			1	1
	200000000000000000000000000000000000000	IncP-7				PCR	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
		IncP-9 IncP-7 IncN				PCR	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
			B-Typ	(LowGC)	qPCR	(traN)	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
				B-Typ ((LowGC)	PCR	ES.					1	ij.	ū				•		•	•	ľ					•	•
		3				Hybr.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
		IncW			PCR	(oriV)	ľ	ï	Ľ	ľ	1	1	i	ű	1	•	ı	1	i	i	ı	ı	•	ľ		ľ	1	1
		OSU			PCR	(oriV)	t	c	C	C	1		9	5	1	1	1	3			D	'n	L	ť	r)	r	1	
				qPCR	IncP-1	(korB)	r	r	ē	Ē	T	1			ā	5	1	•		•	ī	ī	r	r	i.	i.	1	90
		<u>-</u> -		qPCR	IncP-1e	(trfA)	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
		IncP-1			IncP-1	alpha	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
				PCR	IncP-1	Misch	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Bestätigung	o se	enten			PCR	_	•	·	Ü	ı	1	1	j	ā	1	i	•	ı	ī	1	ì	ľ	•	ľ		ij	ı	
Bestäl	des	BGA Rezipienten			BOX-	PCR	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
		BGA					က	က	က	က	က	က	က	က	က	က	က	က	က	က	က	က	က	က	က	က	က	က
		TK Ņ.					E.51	E.52	E.53	E.54	E.55	E.57	E.59	E.61	E.62	E.63	E.64	E.65	E.66	E.67	E.68	E.69	E.70	E.71	E.72	E.73	E.74	E.75

Tab. B21: Ergebnisse des PCR- und qPCR- screenings der Escherichia coli-Transkonjuganten (TK) aus Gärresten der BGA7 & BGA6 auf Plasmide unterschiedlicher Inkompatibilitätsgruppen (IncP-1, IncQ, IncW, LowGC, IncP-9, IncP-7 und IncN), Integrons der Klasse 1 (Integrasegen 1, intl 1), Integrongenkassetten und Überprüfung des Rezpienten (+ = positiv, - = negativ, n.a. = nicht analysiert)


	Bestätigung des BGA Rezipienten	ung ten		<u>n</u>	IncP-1		gou	Ě	lncW			lncP-9	IncP-9 IncP-7	ncN	Integrons	ø	n G	Integrase Gen1	intl1
											B-Typ				Größe				
			PCR	Hybr.	qPCR	PCR				B-Typ	(LowGC)				Haupt-			Restr.	
	BOX- PC	PCR I	IncP-1	IncP-1	IncP-1e	IncP-1	PCR	PCR		(LowGC)	gPCR (produkt	Hybr.		Verdau	
3	PCR GI	GFP N	Misch	alpha	(trfA)	(korB)	(oriV)	(oriV)	Hybr.	PCR	(traN)	PCR	PCR	PCR	PCR	aadA	PCR	Hybr.	qPCR
	- n	n.a.		n.a.	n.a.	n.a.		,	n.a.	(+)	81	n.a.	n.a.	1	2500,2000	ŧ	1	n.a.	n.a.
	<u>.</u>	n.a.	•	n.a.	n.a.	n.a.	1	•	n.a.	(+)		n.a.	n.a.		2500,2000	+	1	n.a.	n.a.
_	Г	n.a.	•	n.a.	n.a.	n.a.	1	•	n.a.	(+)		n.a.	n.a.	ı	2500,2000	£	1	n.a.	n.a.
_	<u>-</u>	n.a.	1	n.a.	n.a.	n.a.	1		n.a.	(+)	1	n.a.	n.a.	1	2500,2000			n.a.	n.a.
_		n.a.	1	n.a.	n.a.	n.a.	1	ı	n.a.	(+)	1	n.a.	n.a.	1	2500,2000		1	n.a.	n.a.
_	<u>-</u>	n.a.	•	n.a.	n.a.	n.a.	ı		n.a.	+		n.a.	n.a.		2500,2000	£	ī	n.a.	n.a.
_	<u>-</u>	n.a.	ì	n.a.	n.a.	n.a.			n.a.	(+)		n.a.	n.a.	•	2500,2000			n.a.	n.a.
_	<u>-</u>	n.a.	ř	n.a.	n.a.	n.a.		٠	n.a.	(+)	•	n.a.	n.a.	r	2500,2000	+	1	n.a.	n.a.
_	<u>-</u>	n.a.		n.a.	n.a.	n.a.	r	i	n.a.	(+)	D	n.a.	n.a.	E	2500,2000	£	ı	n.a.	n.a.
_	- n	n.a.	ı	n.a.	n.a.	n.a.	Ľ	ı	n.a.	+	E	n.a.	n.a.	E	2500,2000			n.a.	n.a.
	<u>ا</u>	n.a.	ī	n.a.	n.a.	n.a.	L		n.a.	(+)		n.a.	n.a.	ı	2500,1500	+	+	n.a.	n.a.
	- D	n.a.		n.a.	n.a.	n.a.		Ü	n.a.	(+)5	13	n.a.	n.a.	C	2500,1500	+	+	n.a.	n.a.
	- -	n.a.	ř.	n.a.	n.a.	n.a.	Ē,	Ü	n.a.	(+)5	•	n.a.	n.a.	e	2500,200	+	+	n.a.	n.a.
	<u>_</u>	n.a.	1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	(+)5		n.a.	n.a.	n.a.	2500,1500	1	1	n.a.	n.a.
	- -	n.a.	1	n.a.	n.a.	n.a.	1	1	n.a.	(+)5		n.a.	n.a.	1	2500,1500	+	+	n.a.	n.a.
	·	n.a.	1	n.a.	n.a.	n.a.		ā	n.a.	(+)	81	n.a.	n.a.	9	2500,1500	+	+	n.a.	n.a.
	<u>-</u>	n.a.	•	n.a.	n.a.	n.a.		1	n.a.	(+)	81	n.a.	n.a.	•	2500,1500	+	+	n.a.	n.a.
	<u>-</u>	n.a.	Ţ	n.a.	n.a.	n.a.			n.a.	(+)		n.a.	n.a.	1	2500,1500	+	+	n.a.	n.a.
	- -	n.a.	•	n.a.	n.a.	n.a.	1	•	n.a.	(+)		n.a.	n.a.	1	2500,1500	+	+	n.a.	n.a.
	D	n.a.	ī	n.a.	n.a.	n.a.		ı	n.a	(+)	1	n.a.	n.a.	a	2500,1500	+	+	n.a.	n.a.

Tab. B22: *Escherichia coli*-Transkonjuganten (TK) aus Gärresten von BGA1, BGA2, BGA3, BGA5, BGA7 & BGA6. Nachweis von Antibiotikaresistenzgenen (*sul1*, *sul2* gegen Sulfonamide, *tetA* gegen Tetrazykline) mittels PCR und qPCR. (+ = positiv, - = negativ, n.a. = nicht analysiert)

			-	_		-				_			
TKNr.	BGA	tetA	sul1	sul2	TKNr.	BGA	sul1	sul2	TKNr.	BGA	tetA	sul1	sul2
		PCR	qPCR	qPCR			qPCR	qPCR			PCR	qPCR	qPCR
E.1	1	-		+	E.26	2	+	-	E.76	5	+	+	+
E.2	1	-	_	+	E.27	2	:=:	+	E.77	5	+	+	+
E.3	1		+	-	E.28	2	+	-	E.78	5	+	+	+
E.4	1	-	_	+	E.29	2		+	E.79	5	+	+	+
E.5	1	-	l <u>-</u>	+	E.30	2	-	+	E.80	5	+	+	+
E.6	1	-	+	-	E.31	2	+	-	E.81	5	+	+	+
E.7		-	33.00	+	E.32	2	-	+	E.82	5	+	+	+
E.8				7997	E.33	2	.=	+	E.83	5	+	-	+
	1 1	-		+	E.34	2	+	-	E.84	5	+	+	+
E.9	1 1	+	+	-	E.35	2	+	-	E.85	5	+	+	+
E.10	1	+	+	-	E.51	3	-	+	E.101	7	n.a.	-	+
E.11	1 1	n.a.	+	-	E.52	3	120	+	E.102	7	n.a.	-	+
E.12	1	n.a.	+	-	E.53	3	Y <u>4</u> 8	+	E.103	7	n.a.	-	+
E.13	1	n.a.	+	-	E.54	3	-	+	E.104	7	n.a.	X <u>4</u> 0	+
E.14	1	n.a.	+	-	E.55	3	S=3	+	E.105	7	n.a.	Y 2 8	+
E.16	1	n.a.	+	-	E.57	3	: <u>-</u> :	+	E.106	7	n.a.	523	+
E.17	1	n.a.	+		E.59	3	-	+	E.107	7	n.a.	5 2 5	+
E.19	1	n.a.	+	-	E.61	3	+	-	E.108	7	n.a.		+
E.21	1	n.a.	+	-	E.62	3	(+)	+	E.109	7	n.a.	-	+
E.22	1	n.a.	+	-0	E.63	3	+	-	E.110	7	n.a.	-	+
E.23	1	n.a.	+	-	E.64	3	+	- 1	E.126	6	n.a.	+	1 - 1
E.25	1	n.a.	+	_	E.65	3		+	E.127	6	n.a.	+	1 - 1
		6 6		0. 91	E.66	3	.=1	+	E.128	6	n.a.	+	-
					E.67	3	(- 1)	+	E.129	6	n.a.	1.81	+
					E.68	3	-	+	E.130	6	n.a.	+	-
					E.69	3	-	+	E.131	6	n.a.	+	-
					E.70	3	Y-3	+	E.132	6	n.a.	+	
					E.71	3	N <u>-</u> 8	+	E.133	6	n.a.	+	-
					E.72	3	-	+	E.134	6	n.a.	+	-
					E.73	3	-	+	E.135	6	n.a.	+	-
					E.74	3	-	+ '			243433044		
					E.75	3	_	+					

BGA6. Ergebnisse der Antibiogramme, Bestätigung des Rezipienten nach exogener Plasmidisolierung und Ergebnisse des PCR- und qPCRscreenings auf Integrons der Klasse 1 (intl1), Integrongenkassetten sowie von Resistenzgenen gegen Tetrazykline (tetA), Aminoglykoside Tab. B23: Escherichia coli DH5α-Transformanten der exogen isolierten IncP-1,-Plasmide aus Gärresten der BGA1, BGA2, BGA5, BGA7 & (aadA), Sulfonamide (sul1, sul2) und quaternäre Ammoniumverbindungen (qacE). (+ = positiv, - = negativ, n.a. = nicht analysiert, CLAMP = Chloramphenicol, Doxy = Doxyzyklin, SDZ = Sulfadiazin, Strepto = Streptomycin, TMP = Trimethoprim. Außerdem getestet: Ampicillin, Enrofloxacin und Cefotaxim)

				V.	Integrons	sus				ý.	Antibiogramme	nme
		Bestätigung	IncP-1e		Größe							
		des	qPCR	tetA	Haupt-	Hybr.	intl1	qacEall	sul1	sul2	gefundene	mäßige
Transformant	BGA	Rezipienten	(trfA)	PCR	produkt	aadA	qPCR	qPCR	qPCR	qPCR	Resistenzen	Sensitivität
Ps.26	2	+	+	+	~1000bp	‡	+	+	+	n.a.	SDZ	Doxy
Ps.28	7	+	+	+	~1600bp	Ü	+	+	+	n.a.	SDZ, TMP	Doxy, Strepto
					~1700bp+							
Ps.29	7	+	+	+	2300bp	‡	+	+	+	n.a.	SDZ, CLAMP, Strepto	Doxy
Ps.30	7	+	+	+	~1000bp	‡	+	+	+	n.a.	SDZ	Doxy, Strepto
Ps.32	7	+	+	+	~1000bp	+	+	+	+	n.a.	SDZ, Strepto	Doxy
Ps.101	2	+	+	+	~1700bp	‡	+	+	+	n.a.	SDZ, Strepto	Doxy, CLAMP
Ps.110	2	+	+	+	~1000bp	+++	+	+	+	n.a.	SDZ	Doxy, Strepto
Ps.128	7	+	+	+	~2200bp	ij	+	+	+	n.a.	SDZ, TMP	Doxy, Strepto
					~1700bp+							
Ps.134	7	+	+	+	2300bp	‡	+	+	+	n.a.	SDZ, CLAMP, Strepto	Doxy
Ps.151	9	+	+	+	~1500bp	1	+	+	+	n.a.	SDZ, TMP	Doxy, Strepto
Ps.152	9	+	+	+	~2200bp	ä	+	+	+	n.a.	SDZ, TMP	Doxy, Strepto
Ps.154	9	+	+	+	~2200bp	į.	+	+	+	n.a.	SDZ, TMP	Doxy, Strepto
Ps.156	9	+	+	+	~2200bp	1	+	+	+	n.a.	SDZ, TMP	Doxy, Strepto
E.9	-	+	+	+	2200	T	+	+	+		SDZ, TMP	Doxy, Strepto
E .10	_	+	+	+	2200		+	+	+	9	SDZ, TMP	Doxy, Strepto
E.12	<u></u>	+	+	+	2200	Ĺ	+	+	+	ı,	SDZ, TMP	Doxy, Strepto
E.13	<u></u>	+	+	+	2200	I.	+	+	+	<u>I</u>	SDZ, TMP	Doxy, Strepto
E.17	_	+	+	+	2200	1	+	+	+	1	SDZ, TMP	Doxy, Strepto

Abb. B50: Cluster Analyse (UPGMA) der Restriktionsmuster transformierter Plasmide nach Notl-Verdau, zugehörige Größe der Integron-Genkassetten und Resistenzmuster (E = Plasmid ursprünglich in *E. coli* CV601 gfp^+ gefischt, Ps = Plasmid ursprünglich in *P. putida* KT2442 gfp^+ gefischt).

 Tab. B24:
 Annotation der durch 454-Pyrosequenzierung aus Gärresten von 8 mesophilen Biogasanlagen (BGA)
 gewonnenen Sequenzen (Angaben in %. n=3)

 Es wurden nur die Taxa berücksichtigt, deren Anteil in wenigstens einer Probe mindestens 1% betrug.

10.4 8.8 33.3 5 8.2 3.3 11 0.5 0.2
18.9 10 8.5 5 1.3 1.
24.9
10.8 10.9 8.5 16.5 0.4 0.9 1.3 1.2 1.4 2.1
20.1 20.1 0.4 0.0 2.7 1.1
Porphyromonadaceae Flavobacteriaceae
Account Mileston
Bacteroidales Bacteroidales Flavobacteriales
unassigned Bacteroidetes Bacteroidetes Bacteroidia Bacteroidales Bacteroidetes Flavobacteria Flavobacteriales

Fortsetzung Tab. B24: Annotation der durch 454-Pyrosequenzierung aus Gärresten von 8 mesophilen Biogasanlagen (BGA) gewonnenen Sequenzen (Angaben in %, n=3). Es wurden nur die Taxa berücksichtigt, deren Anteil in wenigstens einer Probe mindestens 1% betrug.

Control of the Contro)		SCIENCE CONTRACTOR CON		Section Commence of the Commen		
Phylum	class	order	family	genus	BGA1	BGA2	BGA3	BGA4	BGA5	BGA6	BGA7	BGA8
Firmicutes					60.5±8	74.6±1	61.6±3	65.5±1	59.9±1	75.3±1	73.6±0	54.7±1
Firmicutes Bacilli	Bacilli				2.4±1	4.3±0	4.4±0	2.4±0	1.9±0	3.2±1	4.1±1	3.8±1
Firmicutes Bacilli	Bacilli	Bacillales			2.3±1	1.4±0	2.1±0	1.2±0	0.9±0	1.6±1	2.9±0	1.9±0
Firmicutes Bacilli	Bacilli	Bacillales	Bacillaceae		1.1±0	0.8±0	1.1±0	0.7±0	0.5±0	0.8±0	1.8±0	0.8±0
Firmicutes Bacilli	Bacilli	Lactobacillales			0.1±0	2.9±0	2.3±0	1.3±0	1+0	1.6±0	1.1±0	1.9±0
Firmicutes Bacilli	Bacilli	Lactobacillales	Streptococcaceae		0∓0	2.8±0	2.2±0	1.2±0	0.8±0	1.4±0	0.9±0	1.8±0
Firmicutes Bacilli	Bacilli	Lactobacillales	Streptococcaceae	Streptococcus	0∓0	2.8±0	2.2±0	1.2±0	0.8±0	1.4±0	0.9±0	1.8±0
Firmicutes Clostridia	Clostridia				54.4±7	59.6±1	48.8±2	45.8±1	51.8±2	60.7±1	59.8±1	32.9±1
Firmicutes Clostridia	Clostridia	Clostridiales			50.3±6	50.5±1	36.3±3	28.9±1	37±2	44.8±3	44.8±0	18.5±1
Firmicutes Clostridia	Clostridia	Clostridiales	Clostridiaceae		23.1±4	17±0	10.5±2	6.2±1	2.7±0	11.5±2	2.8±0	0.9±0
Firmicutes Clostridia	Clostridia	Clostridiales	Clostridiaceae	Clostridium	18.2±3	13.6±1	8.5±1	5±1	1.8±0	6.8±2	2.3±0	0.6±0
Firmicutes Clostridia	Clostridia	Clostridiales	Incertae Sedis XI		3.3±0	12.9±0	7.8±1	3.2±0	15±2	4.8±0	9.7±1	4.3±1
Firmicutes Clostridia	Clostridia	Clostridiales	Incertae Sedis XI	Sedimentibacter	2.3±0	4.9±0	2.7±0	0.9±0	3.3±0	2.1±0	3.2±0	3.6±1
Firmicutes Clostridia	Clostridia	Clostridiales	Incertae Sedis XI	Tissierella	0.7±0	1.8±0	0.2±0	0.3±0	1.5±1	1.9±0	0.9±0	0.5±0
Firmicutes Clostridia	Clostridia	Clostridiales	Lachnospiraceae		7.6±6	3.4±1	4.5±1	5.7±1	2.9±0	2.1±1	3±1	1.6±0
Firmicutes Clostridia	Clostridia	Clostridiales	Peptostreptococcaceae	Q	2.3±0	2.9±1	1.6±0	0.9±0	0.5±0	1.3±0	3.7±1	0.2±0
Firmicutes Clostridia	Clostridia	Clostridiales	Ruminococcaceae		2.2±0	2.1±0	1.2±0	2±0	3.4±0	4.2±1	2.6±0	3∓0
Firmicutes Clostridia	Clostridia	Clostridiales	Syntrophomonadaceae	Φ	0.6±0	0.4±0	0.3±0	0.2±0	0.3±0	1.1±0	0.5±0	0.5±0
Firmicutes	Firmicutes Erysipelotrichi	-			3.1±1	4.7±0	4.4±1	1.2±0	0.8±0	1.7±0	3.5±1	0.3±0
Firmicutes	Erysipelotrich	Firmicutes Erysipelotrichi Erysipelotrichales			3.1±1	4.7±0	4.4±1	1.2±0	0.8±0	1.7±0	3.5±1	0.3±0
Firmicutes	Erysipelotrich	ii Erysipelotrichales	Firmicutes Erysipelotrichi Erysipelotrichales Erysipelotrichaceae		3.1±1	4.7±0	4.4±1	1.2±0	0.8±0	1.7±0	3.5±1	0.3±0
Firmicutes	Erysipelotrich	ii Erysipelotrichales	Firmicutes Erysipelotrichi Erysipelotrichales Erysipelotrichaceae	Turicibacter	2.4±1	4.4±0	3.3±0	1.1±0	0.6±0	1.6±0	3±0	0.2±0
	2000		00000									

Sequenzen auf dem Phylum-Level (Angaben in % mit Standardabweichungen, n=3). Signifikante Unterschiede zwischen den einzelnen Probenahmestufen sind durch fett gedruckte Zahlen und Sternchen gekennzeichnet. Es wurden nur die Taxa berücksichtigt, deren Anteil in Tab. B25: Annotation der durch 454-Pyrosequenzierung aus der Gülle, den Fermenterproben und Gärresten von BGA #3 gewonnenen wenigstens einer Probe mindestens 1% betrug.

| 21.1±3 | $2.5\pm0*$ | $2.5\pm0*$ | 1.4±0* | 2.2±0* | 61.6±3* | 4.4±0*

 | $2.1\pm0*$ | 1.1±0* | 2.3±0*
 | 2.2±0*

 | 2.2±0* | 48.8±2* | 36.3±3* | 10.5±2* | 8.5±1*
 | 7.8±1* | $2.7\pm0*$ | 4.5±1* | 1.6±0* | 1.2±0* | 0+0
 | 0.3±0*
 | 4.4±1* | 4.4±1* | 4.4±1* | 3.3±0* |
|---------------|----------------------------------|--|--|---|--
--
--
--|---|---|---
--
--
--|--|---|--|---
---|---|---|--|---|--
--
---|---|--|--|--
--|
| 20.5±1 | 3.8±0 | 3.8±0 | 윴 | 1.5±0 | 64.4±3 | 1.8±0

 | 0.6±0 | 0.1±0 | 1.2±0
 | 0 1 0

 | 당 | 52.4±1 | 51.1±2 | 23.9±3 | 18.8±2
 | 4.8±0 | 1.5±0 | 1.5±0 | 3.5±0 | 6.1±0 | 0.2±0
 | 2.1±0
 | 8.9±2 | 8.942 | 8.9±2 | 8.2±2 |
| 21.1±3 | 2.5±0 | 2.5±0 | 1.4±0 | 2.2±0 | 61.6±3 | 4.4±0

 | 2.1±0 | 1.1±0 | 2.3±0
 | 2.2±0

 | 2.2±0 | 48.8±2 | 36.3±3 | 10.5±2 | 8.5±1
 | 7.8±1 | 2.7±0 | 4.5±1 | 1.6±0 | 1.2±0 | 돥
 | 0.3±0
 | 4.4±1 | 4.4±1 | 4.4±1 | 3.3±0 |
| 17±1* | 2.5±0 | 2.5±0 | 1.5±0 | 2.3±0 | 67.1±2* | 3.2±0*

 | 0.5±0* | 0.1±0* | 2.7±0
 | 2.3±0

 | 2.3±0 | 54.8±2* | 40.7±1* | 2.2±1* | 1.7±0*
 | 9.1±1 | 5.3±1* | 3#1* | 0.3±0* | 5.2±1* | 1.5±0*
 | °.8±0*
 | 1.6±0* | 1.6±0* | 1.6±0* | 0.7±0* |
| 17±1* | 2.5±0* | 2.5±0* | 1.5±0* | 2.3±0* | 67.1±2* | 3.2±0*

 | 0.5±0 | 0.1±0 | 2.7±0*
 | 2.3±0*

 | 2.3±0* | 54.8±2 | 40.7±1* | 2.2±1* | 1.7±0*
 | 9.1±1* | 5.3±1* | 314 | 0.3±0* | 5.2±1 | 1.5±0*
 | 0.8±0*
 | 1.6±0* | 1.6±0* | 1.6±0* | 0.7±0* |
| 20.5±1 | 3.8±0 | 3.8±0 | 욨 | 1.5±0 | 64.4±3 | 1.8±0

 | 0.6±0 | 0.1±0 | 1.2±0
 | 쥥

 | 윉 | 52.4±1 | 51.12 | 23.9±3 | 18.8±2
 | 4.8±0 | 1.5±0 | 1.5±0 | 3.5±0 | 6.1±0 | 0.2±0
 | 2.1±0
 | 8.9±2 | 8.942 | 8.9±2 | 8.2±2 |
| | | | | | |

 | | |
 |

 | Streptococcus | | | | Clostridium
 | | Sedimentibacter | | | | Ruminococcus
 | 3200
 | | | | Turicibacter |
| | | | Porphyromonadaceae | | |

 | | Bacillaceae |
 | Streptococcaceae

 | Streptococcaceae | | | Clostridiaceae | Clostridiaceae
 | Incertae Sedis XI | Incertae Sedis XI | Lachnospiraceae | Peptostreptococcaceae | Ruminococcaceae | Ruminococcaceae
 | Syntrophomonadaceae
 | | | Erysipelotrichaceae | Erysipelotrichaceae |
| | | Bacteroidales | Bacteroidales | | |

 | Bacillales | Bacillales | Lactobacillales
 | Lactobacillales

 | Lactobacillales | | Clostridiales | Clostridiales | Clostridiales
 | Clostridiales | | | Clostridiales | Clostridiales | Clostridiales
 | Clostridiales
 | | Erysipelotrichales | Erysipelotrichales | Erysipelotrichales |
| | Bacteroidia | Bacteroidia | Bacteroidia | Flavobacteria | | Bacilli

 | Bacilli | Bacilli | Bacilli
 | Bacilli

 | Bacilli | Clostridia | Clostridia | Clostridia | Clostridia
 | Clostridia | Clostridia | Clostridia | Clostridia | Clostridia | Clostridia
 | Clostridia
 | Erysipelotrichi | Erysipelotrichi | Erysipelotrichi | Erysipelotrichi |
| Bacteroidetes | Bacteroidetes | Bacteroidetes | Bacteroidetes | Bacteroidetes | Firmicutes | Firmicutes

 | Firmicutes | Firmicutes | Firmicutes
 | Firmicutes

 | Firmicutes | Firmicutes | Firmicutes | Firmicutes | Firmicutes
 | Firmicutes | Firmicutes | Firmicutes | Firmicutes | Firmicutes | Firmicutes
 | Firmicutes
 | Firmicutes | Firmicutes | Firmicutes | Firmicutes |
| | 20.5±1 17±1* 17±1* 21.1±3 20.5±1 | 20.5±1 17±1* 17±1* 21.1±3 20.5±1 Bacteroidia 3.8±0 2.5±0 2.5±0 2.5±0 3.8±0 | 20.5±1 17±1* 21.1±3 20.5±1 Bacteroidia 3.8±0 2.5±0 2.5±0 2.5±0 3.8±0 Bacteroidia Bacteroidales 3.8±0 2.5±0 2.5±0 2.5±0 3.8±0 | Bacteroidia Bacteroidia Bacteroidia Bacteroidia Porphyromonadaceae 3.840 2.540 2.540 2.540 2.540 3.840 3.840 2.540* 2.540 2.540 3.840 3.840 3.540 3.840 3.840 | Bacteroidia 20.5±1 17±1* 21.1±3 20.5±1 Bacteroidia Bacteroidales 3.8±0 2.5±0 2.5±0 2.5±0 3.8±0 Bacteroidia Bacteroidales Porphyromonadaceae 3±0 1.5±0* 1.5±0 1.4±0 3±0 Flavobacteria 2.3±0 2.3±0 2.2±0 1.5±0 1.5±0 | Bacteroidia 20.5±1 17±1* 21.1±3 20.5±1 Bacteroidia Bacteroidales 3.8±0 2.5±0 2.5±0 2.5±0 3.8±0 Bacteroidia Bacteroidia Bacteroidia Porphyromonadaceae 3±0 1.5±0* 1.5±0 1.4±0 3±0 Flavobacteria 1.5±0 2.3±0 2.2±0 1.5±0 <td>Bacteroidia Bacteroidia Bacteroidia Porphyromonadaceae 3.8±0 2.5±0* 2.5±0 2.5±0 2.5±0 3.8±0 Bacteroidia Bacteroidia Bacteroidia Bacteroidia Porphyromonadaceae 3±0 2.5±0 2.5±0 2.5±0 3.8±0 Flavobacteria Bacteroidia Bacteroidia 1.5±0 1.5±0 1.5±0 1.5±0 Bacteroidia Bacteroidia 1.5±0 2.3±0 2.2±0 1.5±0 1.5±0 Flavobacteria 64.4±3 67.1±2* 67.1±2* 61.6±3 64.4±3 67.1±2* 67.1±2* 61.6±3 64.4±3 67.1±0* 1.8±0 1.8±0</td> <td>Bacteroidia 20.5±1 17±1* 21.1±3 20.5±1 Bacteroidia Bacteroidales 3.8±0 2.5±0* 2.5±0 2.5±0 3.8±0 Bacteroidia Bacteroidales Porphyromonadaceae 3±0 2.5±0* 2.5±0 2.5±0 3.8±0 Flavobacteria Bacteroidales 1.5±0 1.5±0 1.5±0 1.5±0 1.5±0 Bacilli Bacillales Bacillales 0.6±0 0.5±0* 0.5±0* 2.1±0 0.6±0</td> <td>Bacteroidia Bacteroidia Porphyromonadaceae 20.5±1 17±1* 21.1±3 20.5±1 Bacteroidia Bacteroidia Bacteroidia Bacteroidia Bacteroidia 2.5±0 2.5±0 2.5±0 3.8±0 Flavobacteria Bacteroidia Bacteroidia Bacteroidia 1.5±0 1.5±0 1.4±0 3.2±0 Flavobacteria 1.5±0 2.3±0 2.3±0 2.2±0 1.5±0 Bacilli Bacillales 1.8±0 3.2±0 4.4±0 1.8±0 Bacilli Bacillales Bacillaceae 0.1±0 0.1±0 0.1±0 0.1±0 0.1±0</td> <td>Bacteroidia Bacteroidia Porphyromonadaceae 20.5±1 17±1* 21.1±3 20.5±1 Bacteroidia Bacteroidia Bacteroidia Bacteroidia 2.5±0 2.5±0 2.5±0 3.8±0 Bacteroidia Bacteroidia Bacteroidia Bacteroidia 3.8±0 2.5±0 2.5±0 2.5±0 3.8±0 Flavobacteria Bacteroidia Bacilliales Bacilliales 1.5±0 1.4±0 2.2±0 1.5±0<td>Bacteroidia Bacteroidia 20.5±1 17±1* 21.1±3 20.5±1 Bacteroidia Bacteroidia Bacteroidia 2.5±0* 2.5±0 2.5±0 2.5±0 3.8±0 Bacteroidia Bacteroidia Bacteroidia Bacteroidia 3.2±0* 2.5±0 2.5±0 3.8±0 Flavobacteria Bacteroidia Bacilliales Bacilliales 1.5±0 1.4±0 3.2±0 1.5±0</td><td>Bacteroidia Bacteroidia Bacteroidia 20.5±1 17±1* 17±1* 21.1±3 20.5±1 Bacteroidia Bacteroidales Porphyromonadaceae 3.8±0 2.5±0* 2.5±0 2.5±0 2.5±0 3.8±0 Bacteroidia Bacteroidales Porphyromonadaceae 3±0 1.5±0* 2.5±0 2.5±0 3.8±0 Flavobacteria Bacteroidales Porphyromonadaceae 3±0 1.5±0 2.5±0 2.5±0 3.2±0 3.5±0 3.5±0 3.5±0 1</td><td>Bacteroidia Bacteroidia Bacteroidia Porphyromonadaceae 3.8±0 2.5±0* 2.5±0 2.5±0 2.5±0 2.5±0 2.5±0 2.5±0 3.8±0 Bacteroidia Bacteroidales Porphyromonadaceae 3±0 1.5±0* 2.5±0 2.5±0 2.5±0 3.5±0 Flavobacteria Bacteroidales Porphyromonadaceae 3±0 1.5±0* 1.5±0 1.4±0 3±0 Bacilli Bacillales Bacillales Bacillales Bacillales 9.0±0 0.5±0* 0.5±0* 2.1±0 0.1±0 Bacilli Lactobacillales Bacillales Bacillales Streptococcaceae 0.1±0 0.1±0 0.1±0 0.1±0 Bacilli Lactobacillales Streptococcaceae Streptococcaceae Streptococcaceae Streptococcaceae 0±0 2.3±0* 2.2±0 0±0 Bacilli Lactobacillales Streptococcaceae Streptococcaceae Streptococcaceae Streptococcaceae Streptococcaceae Streptococcaceae Streptococcaceae Streptococcaceae Streptococcaceae</td><td>Bacteroidia Bacteroidia Bacteroidia 17±1* 17±1* 21.1±3 20.5±1 Bacteroidia Bacteroidia Bacteroidales Porphyromonadaceae 3.8±0 2.5±0* 2.5±0 2.5±0 2.5±0 3.8±0 Bacteroidia Bacteroidales Porphyromonadaceae 3.8±0 2.5±0* 2.5±0 2.5±0 3.8±0 Flavobacteria Bacteroidiales Porphyromonadaceae 1.5±0 1.5±0 1.4±0 3.4±3 Bacilli Bacillales Bacillales Bacillales Bacillales 3.2±0* 3.2±0* 4.4±0 1.8±0 Bacilli Lactobacillales Bacillales Bacillales Streptococcaceae 0.1±0 0.1±0 0.1±0* 0.1±0 0.1±0 Bacilli Lactobacillales Streptococcaceae
 Streptococcaceae Streptococcaceae Streptococcaceae Streptococcaceae Streptococcaceae 5.3±0* 2.2±0 0.20 Clostridia Clostridia Clostridia Clostridia 0.2±0 0.2±0 0.2±0 0.2±0</td><td>Bacteroidia Bacteroidia Porphyromonadaceae 3.840 2.540 7.741 21.143 20.541 Bacteroidia Bacteroidales Porphyromonadaceae 3.840 2.540 2.540 2.540 3.840 Bacteroidia Bacteroidales Porphyromonadaceae 3.40 1.540 1.540 1.440 3.840 Bacillales Bacillales Bacillales Bacillales Bacillales 1.540 0.7142 67.142 67.142 67.142 1.540 1.540 Bacillales Bacillales Bacillales Bacillales Bacillales 1.240 0.540 2.140 0.644 1.340 Bacillales Bacillales Bacillales Bacillales 1.240 0.1</td><td>Bacteroidia Bacteroidiales Porphyromonadaceae 3.840 2.540* 2.540 2.540 2.540 2.540 3.840 Bacteroidia Bacteroidales Porphyromonadaceae 3.840 2.540* 2.540 2.540 2.540 3.840 Bacteroidia Bacteroidales Porphyromonadaceae 3.40 1.540 2.340 2.540 1.540 3.40 Bacilli Bacillales Bacillales Bacillaceae 0.6443 67.142* 67.142* 61.643 64.443 Bacilli Lactobacillales Bacillaceae 0.640 0.540* 0.540* 2.140 0.140 Bacilli Lactobacillales Streptococcaceae Streptococcaceae Streptococcaceae 0.140 0.140* 2.240 0.540 Clostridiales Streptococcaceae Streptococcaceae Streptococcaceae Streptococcaceae Streptococcaceae 0.140 0.140 0.140 0.140 Clostridiales Clostridiales Clostridiales Clostridiales Clostridiales Clostridiales</td><td>Bacteroidia Bacteroidiales Porphyromonadaceae 3.840 2.540 2.540 2.540 2.540 2.540 3.840 3.840 3.840 2.540 2.540 2.540 3.841 3.840 3.840 3.841 3.841 3.841 3.841 3.841 3.841 3.841 3.841 3.841 3.841 3.841 3.841 3.841 3.841</td><td>Bacteroidia Bacteroidiales Porphyromonadaceae 20.5±1 17±1* 21.1±3 20.5±1 20.5±1 20.5±1 20.5±1 20.5±1 20.5±1 20.5±1 20.5±1 20.5±1 20.5±1 20.5±1 20.5±1 3.8±0 20.5±1 3.8±0 20.5±1 3.8±0 20.5±1 3.8±0 3.2±0 3.2±0 3.2±0 3.2±0 3.2±0 3.2±0 3.2±0 3.2±0 3.2±0 3.2±0 3.2±0</td><td>Bacteroidia Bacteroidia Bacteroidia 20.5±1 17±1* 17±1* 21.1±3 20.5±1 Bacteroidia Bacteroidales Porphyromonadaceae 3.8±0 2.5±0 2.5±0 3.8±0 Bacteroidia Bacteroidales Porphyromonadaceae 3.8±0 2.5±0 2.5±0 3.8±0 Bacillales Bacillales Bacillales Bacillales Bacillales 0.6±0 0.5±0 2.3±0 1.4±0 1.8±0 Bacilli Lactobacillales Bacillaceae 0.1±0</td><td>Bacteroidia Bacteroidiales Porphyromonadaceae Stepto coccaceae 2.540 2.540 2.540 2.540 3.840</td><td>Bacteroidia Bacteroidiales Bacteroidiales Porphyromonadaceae 3.8±0 2.5±0 2.5±0 2.5±0 3.8±0 Bacteroidia Bacteroidiales Bacteroidiales Porphyromonadaceae 3.8±0 2.5±0 2.5±0 2.5±0 3.8±0 Bacteroidia Bacteroidiales Porphyromonadaceae 1.5±0 1.5±0 1.5±0 3.2±0 3.2±0 3.2±0 3.8±0 Bacillales Bacillales Bacillales Bacillales Bacillales 9.0±0 0.5±0 0.5±0 1.5±0 <td< td=""><td> Sacteroidia Bacteroidia Bacillales Bacillales </td><td> Sacteroidia Bacteroidia Bactiliales Baciliales Bacilia</td><td> Sacteroidia Bacteroidia Bacillales Bacillale</td><td>Bactlinia Bacteroidiales Bacteroidiales Pophyromonadaceae 20.541 1741* 21.143 20.541 3.0541 2540 2.540 3.40 3.40 3.40 3.40 3.40 3.40 3.40 3.40 3.40 3.40 3.40 3.40 3.40 3.40 3.40 3.40 3.40
 3.40 <</td><td> 20.5th 17th 21.1th 20.5th 2.5th 2.</td></td<></td></td> | Bacteroidia Bacteroidia Bacteroidia Porphyromonadaceae 3.8±0 2.5±0* 2.5±0 2.5±0 2.5±0 3.8±0 Bacteroidia Bacteroidia Bacteroidia Bacteroidia Porphyromonadaceae 3±0 2.5±0 2.5±0 2.5±0 3.8±0 Flavobacteria Bacteroidia Bacteroidia 1.5±0 1.5±0 1.5±0 1.5±0 Bacteroidia Bacteroidia 1.5±0 2.3±0 2.2±0 1.5±0 1.5±0 Flavobacteria 64.4±3 67.1±2* 67.1±2* 61.6±3 64.4±3 67.1±2* 67.1±2* 61.6±3 64.4±3 67.1±0* 1.8±0 1.8±0 | Bacteroidia 20.5±1 17±1* 21.1±3 20.5±1 Bacteroidia Bacteroidales 3.8±0 2.5±0* 2.5±0 2.5±0 3.8±0 Bacteroidia Bacteroidales Porphyromonadaceae 3±0 2.5±0* 2.5±0 2.5±0 3.8±0 Flavobacteria Bacteroidales 1.5±0 1.5±0 1.5±0 1.5±0 1.5±0 Bacilli Bacillales Bacillales 0.6±0 0.5±0* 0.5±0* 2.1±0 0.6±0 | Bacteroidia Bacteroidia Porphyromonadaceae 20.5±1 17±1* 21.1±3 20.5±1 Bacteroidia Bacteroidia Bacteroidia Bacteroidia Bacteroidia 2.5±0 2.5±0 2.5±0 3.8±0 Flavobacteria Bacteroidia Bacteroidia Bacteroidia 1.5±0 1.5±0 1.4±0 3.2±0 Flavobacteria 1.5±0 2.3±0 2.3±0 2.2±0 1.5±0 Bacilli Bacillales 1.8±0 3.2±0 4.4±0 1.8±0 Bacilli Bacillales Bacillaceae 0.1±0 0.1±0 0.1±0 0.1±0 0.1±0 | Bacteroidia Bacteroidia Porphyromonadaceae 20.5±1 17±1* 21.1±3 20.5±1 Bacteroidia Bacteroidia Bacteroidia Bacteroidia 2.5±0 2.5±0 2.5±0 3.8±0 Bacteroidia Bacteroidia Bacteroidia Bacteroidia 3.8±0 2.5±0 2.5±0 2.5±0 3.8±0 Flavobacteria Bacteroidia Bacilliales Bacilliales 1.5±0 1.4±0 2.2±0 1.5±0 <td>Bacteroidia Bacteroidia 20.5±1 17±1* 21.1±3 20.5±1 Bacteroidia Bacteroidia Bacteroidia 2.5±0* 2.5±0 2.5±0 2.5±0 3.8±0 Bacteroidia Bacteroidia Bacteroidia Bacteroidia 3.2±0* 2.5±0 2.5±0 3.8±0 Flavobacteria Bacteroidia Bacilliales Bacilliales 1.5±0 1.4±0 3.2±0 1.5±0</td> <td>Bacteroidia Bacteroidia Bacteroidia 20.5±1 17±1* 17±1* 21.1±3 20.5±1 Bacteroidia Bacteroidales Porphyromonadaceae 3.8±0 2.5±0* 2.5±0 2.5±0 2.5±0 3.8±0 Bacteroidia Bacteroidales Porphyromonadaceae 3±0 1.5±0* 2.5±0 2.5±0 3.8±0 Flavobacteria Bacteroidales Porphyromonadaceae 3±0 1.5±0 2.5±0 2.5±0 3.2±0 3.5±0 3.5±0 3.5±0 1</td> <td>Bacteroidia Bacteroidia Bacteroidia Porphyromonadaceae 3.8±0 2.5±0* 2.5±0 2.5±0 2.5±0 2.5±0 2.5±0 2.5±0 3.8±0 Bacteroidia Bacteroidales Porphyromonadaceae 3±0 1.5±0* 2.5±0 2.5±0 2.5±0 3.5±0 Flavobacteria Bacteroidales Porphyromonadaceae 3±0 1.5±0* 1.5±0 1.4±0 3±0 Bacilli Bacillales Bacillales Bacillales Bacillales 9.0±0 0.5±0* 0.5±0* 2.1±0 0.1±0 Bacilli Lactobacillales Bacillales Bacillales Streptococcaceae 0.1±0 0.1±0 0.1±0 0.1±0 Bacilli Lactobacillales Streptococcaceae Streptococcaceae Streptococcaceae Streptococcaceae 0±0 2.3±0* 2.2±0 0±0 Bacilli Lactobacillales Streptococcaceae Streptococcaceae Streptococcaceae Streptococcaceae Streptococcaceae Streptococcaceae Streptococcaceae Streptococcaceae Streptococcaceae</td> <td>Bacteroidia Bacteroidia Bacteroidia 17±1* 17±1* 21.1±3 20.5±1 Bacteroidia Bacteroidia Bacteroidales Porphyromonadaceae 3.8±0 2.5±0* 2.5±0 2.5±0 2.5±0 3.8±0 Bacteroidia Bacteroidales Porphyromonadaceae 3.8±0 2.5±0* 2.5±0 2.5±0 3.8±0 Flavobacteria Bacteroidiales Porphyromonadaceae 1.5±0 1.5±0 1.4±0 3.4±3 Bacilli Bacillales Bacillales Bacillales Bacillales 3.2±0* 3.2±0* 4.4±0 1.8±0 Bacilli Lactobacillales Bacillales Bacillales Streptococcaceae 0.1±0 0.1±0 0.1±0* 0.1±0 0.1±0 Bacilli Lactobacillales Streptococcaceae Streptococcaceae Streptococcaceae Streptococcaceae Streptococcaceae Streptococcaceae 5.3±0* 2.2±0 0.20 Clostridia Clostridia Clostridia Clostridia 0.2±0 0.2±0 0.2±0 0.2±0</td> <td>Bacteroidia Bacteroidia Porphyromonadaceae 3.840 2.540 7.741 21.143 20.541 Bacteroidia Bacteroidales Porphyromonadaceae 3.840 2.540 2.540 2.540 3.840 Bacteroidia Bacteroidales Porphyromonadaceae 3.40 1.540 1.540 1.440 3.840 Bacillales Bacillales Bacillales Bacillales Bacillales 1.540 0.7142 67.142 67.142 67.142 1.540 1.540 Bacillales Bacillales Bacillales Bacillales Bacillales 1.240 0.540 2.140 0.644 1.340 Bacillales Bacillales Bacillales Bacillales 1.240 0.1</td> <td>Bacteroidia Bacteroidiales
Porphyromonadaceae 3.840 2.540* 2.540 2.540 2.540 2.540 3.840 Bacteroidia Bacteroidales Porphyromonadaceae 3.840 2.540* 2.540 2.540 2.540 3.840 Bacteroidia Bacteroidales Porphyromonadaceae 3.40 1.540 2.340 2.540 1.540 3.40 Bacilli Bacillales Bacillales Bacillaceae 0.6443 67.142* 67.142* 61.643 64.443 Bacilli Lactobacillales Bacillaceae 0.640 0.540* 0.540* 2.140 0.140 Bacilli Lactobacillales Streptococcaceae Streptococcaceae Streptococcaceae 0.140 0.140* 2.240 0.540 Clostridiales Streptococcaceae Streptococcaceae Streptococcaceae Streptococcaceae Streptococcaceae 0.140 0.140 0.140 0.140 Clostridiales Clostridiales Clostridiales Clostridiales Clostridiales Clostridiales</td> <td>Bacteroidia Bacteroidiales Porphyromonadaceae 3.840 2.540 2.540 2.540 2.540 2.540 3.840 3.840 3.840 2.540 2.540 2.540 3.841 3.840 3.840 3.841 3.841 3.841 3.841 3.841 3.841 3.841 3.841 3.841 3.841 3.841 3.841 3.841 3.841</td> <td>Bacteroidia Bacteroidiales Porphyromonadaceae 20.5±1 17±1* 21.1±3 20.5±1 20.5±1 20.5±1 20.5±1 20.5±1 20.5±1 20.5±1 20.5±1 20.5±1 20.5±1 20.5±1 20.5±1 3.8±0 20.5±1 3.8±0 20.5±1 3.8±0 20.5±1 3.8±0 3.2±0 3.2±0 3.2±0 3.2±0 3.2±0 3.2±0 3.2±0 3.2±0 3.2±0 3.2±0 3.2±0</td> <td>Bacteroidia Bacteroidia Bacteroidia 20.5±1 17±1* 17±1* 21.1±3 20.5±1 Bacteroidia Bacteroidales Porphyromonadaceae 3.8±0 2.5±0 2.5±0 3.8±0 Bacteroidia Bacteroidales Porphyromonadaceae 3.8±0 2.5±0 2.5±0 3.8±0 Bacillales Bacillales Bacillales Bacillales Bacillales 0.6±0 0.5±0 2.3±0 1.4±0 1.8±0 Bacilli Lactobacillales Bacillaceae 0.1±0</td> <td>Bacteroidia Bacteroidiales Porphyromonadaceae Stepto coccaceae 2.540 2.540 2.540 2.540 3.840</td> <td>Bacteroidia Bacteroidiales Bacteroidiales Porphyromonadaceae 3.8±0 2.5±0 2.5±0 2.5±0 3.8±0 Bacteroidia Bacteroidiales Bacteroidiales Porphyromonadaceae 3.8±0 2.5±0 2.5±0 2.5±0 3.8±0 Bacteroidia Bacteroidiales Porphyromonadaceae 1.5±0 1.5±0 1.5±0 3.2±0 3.2±0 3.2±0 3.8±0 Bacillales Bacillales Bacillales Bacillales Bacillales 9.0±0 0.5±0 0.5±0 1.5±0 <td< td=""><td> Sacteroidia Bacteroidia Bacillales Bacillales </td><td> Sacteroidia Bacteroidia Bactiliales Baciliales Bacilia</td><td> Sacteroidia Bacteroidia Bacillales Bacillale</td><td>Bactlinia Bacteroidiales Bacteroidiales Pophyromonadaceae 20.541 1741* 21.143 20.541 3.0541 2540 2.540 3.40 <</td><td> 20.5th 17th 21.1th 20.5th 2.5th 2.</td></td<></td> | Bacteroidia Bacteroidia 20.5±1 17±1* 21.1±3 20.5±1 Bacteroidia Bacteroidia Bacteroidia 2.5±0* 2.5±0 2.5±0 2.5±0 3.8±0 Bacteroidia Bacteroidia Bacteroidia Bacteroidia 3.2±0* 2.5±0 2.5±0 3.8±0 Flavobacteria Bacteroidia Bacilliales Bacilliales 1.5±0 1.4±0 3.2±0 1.5±0
 1.5±0 1.5±0 1.5±0 1.5±0 1.5±0 1.5±0 1.5±0 1.5±0 1.5±0 1.5±0 1.5±0 1.5±0 1.5±0 1.5±0 1.5±0 1.5±0 1.5±0 1.5±0 | Bacteroidia Bacteroidia Bacteroidia 20.5±1 17±1* 17±1* 21.1±3 20.5±1 Bacteroidia Bacteroidales Porphyromonadaceae 3.8±0 2.5±0* 2.5±0 2.5±0 2.5±0 3.8±0 Bacteroidia Bacteroidales Porphyromonadaceae 3±0 1.5±0* 2.5±0 2.5±0 3.8±0 Flavobacteria Bacteroidales Porphyromonadaceae 3±0 1.5±0 2.5±0 2.5±0 3.2±0 3.5±0 3.5±0 3.5±0 1 | Bacteroidia Bacteroidia Bacteroidia Porphyromonadaceae 3.8±0 2.5±0* 2.5±0 2.5±0 2.5±0 2.5±0 2.5±0 2.5±0 3.8±0 Bacteroidia Bacteroidales Porphyromonadaceae 3±0 1.5±0* 2.5±0 2.5±0 2.5±0 3.5±0 Flavobacteria Bacteroidales Porphyromonadaceae 3±0 1.5±0* 1.5±0 1.4±0 3±0 Bacilli Bacillales Bacillales Bacillales Bacillales 9.0±0 0.5±0* 0.5±0* 2.1±0 0.1±0 Bacilli Lactobacillales Bacillales Bacillales Streptococcaceae 0.1±0 0.1±0 0.1±0 0.1±0 Bacilli Lactobacillales Streptococcaceae Streptococcaceae Streptococcaceae Streptococcaceae 0±0 2.3±0* 2.2±0 0±0 Bacilli Lactobacillales Streptococcaceae Streptococcaceae Streptococcaceae Streptococcaceae Streptococcaceae Streptococcaceae Streptococcaceae Streptococcaceae Streptococcaceae | Bacteroidia Bacteroidia Bacteroidia 17±1* 17±1* 21.1±3 20.5±1 Bacteroidia Bacteroidia Bacteroidales Porphyromonadaceae 3.8±0 2.5±0* 2.5±0 2.5±0 2.5±0 3.8±0 Bacteroidia Bacteroidales Porphyromonadaceae 3.8±0 2.5±0* 2.5±0 2.5±0 3.8±0 Flavobacteria Bacteroidiales Porphyromonadaceae 1.5±0 1.5±0 1.4±0 3.4±3 Bacilli Bacillales Bacillales Bacillales Bacillales 3.2±0* 3.2±0* 4.4±0 1.8±0 Bacilli Lactobacillales Bacillales Bacillales Streptococcaceae 0.1±0 0.1±0 0.1±0* 0.1±0 0.1±0 Bacilli Lactobacillales Streptococcaceae Streptococcaceae Streptococcaceae Streptococcaceae Streptococcaceae Streptococcaceae 5.3±0* 2.2±0 0.20 Clostridia Clostridia Clostridia Clostridia 0.2±0 0.2±0 0.2±0 0.2±0 | Bacteroidia Bacteroidia Porphyromonadaceae 3.840 2.540 7.741 21.143 20.541 Bacteroidia Bacteroidales Porphyromonadaceae 3.840 2.540 2.540 2.540 3.840 Bacteroidia Bacteroidales Porphyromonadaceae 3.40 1.540 1.540 1.440 3.840 Bacillales Bacillales Bacillales Bacillales Bacillales 1.540 0.7142 67.142 67.142 67.142 1.540 1.540 Bacillales Bacillales Bacillales Bacillales Bacillales 1.240 0.540 2.140 0.644 1.340 Bacillales Bacillales Bacillales Bacillales 1.240 0.1 | Bacteroidia Bacteroidiales Porphyromonadaceae 3.840 2.540* 2.540 2.540 2.540 2.540 3.840 Bacteroidia Bacteroidales Porphyromonadaceae 3.840 2.540* 2.540 2.540 2.540 3.840 Bacteroidia Bacteroidales Porphyromonadaceae 3.40 1.540 2.340 2.540 1.540 3.40 Bacilli Bacillales Bacillales Bacillaceae 0.6443 67.142* 67.142* 61.643 64.443 Bacilli Lactobacillales Bacillaceae 0.640 0.540* 0.540* 2.140 0.140 Bacilli Lactobacillales Streptococcaceae Streptococcaceae Streptococcaceae 0.140 0.140* 2.240 0.540 Clostridiales Streptococcaceae Streptococcaceae Streptococcaceae Streptococcaceae Streptococcaceae 0.140 0.140 0.140 0.140 Clostridiales Clostridiales Clostridiales Clostridiales Clostridiales Clostridiales | Bacteroidia Bacteroidiales Porphyromonadaceae 3.840 2.540 2.540 2.540 2.540 2.540 3.840 3.840 3.840 2.540 2.540 2.540 3.841 3.840 3.840 3.841 3.841 3.841 3.841 3.841 3.841 3.841 3.841 3.841 3.841 3.841 3.841 3.841 3.841 | Bacteroidia Bacteroidiales Porphyromonadaceae 20.5±1 17±1* 21.1±3 20.5±1 20.5±1 20.5±1 20.5±1 20.5±1 20.5±1 20.5±1 20.5±1 20.5±1 20.5±1 20.5±1 20.5±1 3.8±0 20.5±1 3.8±0 20.5±1 3.8±0 20.5±1 3.8±0 3.2±0 3.2±0 3.2±0 3.2±0 3.2±0 3.2±0 3.2±0 3.2±0 3.2±0 3.2±0 3.2±0 | Bacteroidia Bacteroidia Bacteroidia 20.5±1 17±1* 17±1* 21.1±3 20.5±1 Bacteroidia Bacteroidales Porphyromonadaceae 3.8±0 2.5±0 2.5±0 3.8±0 Bacteroidia Bacteroidales Porphyromonadaceae 3.8±0 2.5±0 2.5±0 3.8±0 Bacillales Bacillales Bacillales Bacillales Bacillales 0.6±0 0.5±0 2.3±0 1.4±0 1.8±0 Bacilli Lactobacillales Bacillaceae 0.1±0
0.1±0 0.1±0 | Bacteroidia Bacteroidiales Porphyromonadaceae Stepto coccaceae 2.540 2.540 2.540 2.540 3.840 | Bacteroidia Bacteroidiales Bacteroidiales Porphyromonadaceae 3.8±0 2.5±0 2.5±0 2.5±0 3.8±0 Bacteroidia Bacteroidiales Bacteroidiales Porphyromonadaceae 3.8±0 2.5±0 2.5±0 2.5±0 3.8±0 Bacteroidia Bacteroidiales Porphyromonadaceae 1.5±0 1.5±0 1.5±0 3.2±0 3.2±0 3.2±0 3.8±0 Bacillales Bacillales Bacillales Bacillales Bacillales 9.0±0 0.5±0 0.5±0 1.5±0 <td< td=""><td> Sacteroidia Bacteroidia Bacillales Bacillales </td><td> Sacteroidia Bacteroidia Bactiliales Baciliales Bacilia</td><td> Sacteroidia Bacteroidia Bacillales Bacillale</td><td>Bactlinia Bacteroidiales Bacteroidiales Pophyromonadaceae 20.541 1741* 21.143 20.541 3.0541 2540 2.540 3.40 <</td><td> 20.5th 17th 21.1th 20.5th 2.5th 2.</td></td<> | Sacteroidia Bacteroidia Bacillales Bacillales | Sacteroidia Bacteroidia Bactiliales Baciliales Bacilia | Sacteroidia Bacteroidia Bacillales Bacillale | Bactlinia Bacteroidiales Bacteroidiales Pophyromonadaceae 20.541 1741* 21.143 20.541 3.0541 2540 2.540 3.40 < | 20.5th 17th 21.1th 20.5th 2.5th 2. |

Biogasanlagen #3 gewonnenen Sequenzen auf dem Phylum-Level (Angaben in % mit Standardabweichen, n=3). Signifikante Unterschiede zwischen den einzelnen Probenahmestufen sind durch fett gedruckte Zahlen und Sternchen gekennzeichnet. Es wurden nur die Taxa Fermenterproben und Gärresten von den B25: Annotation der durch 454-Pyrosequenzierung aus der Gülle, berücksichtigt, deren Anteil in wenigstens einer Probe mindestens 1% betrug. Fortsetzung Tab.

phylum	class	order	family	genus	Gülle	Fermenter	Fermenter	Gärrest	Gülle	Gärrest
Proteobacteria				2.00	3.9±0	0.5±0*	0.5±0*	2.7±0	3.9±0	2.7±0*
Proteobacteria	Proteobacteria Deltaproteobacteria	a			2.9土1	0.1±0*	0.1±0*	1.150	2.9土	1.1±0*
Proteobacteria	Deltaproteobacteria	Proteobacteria Deltaproteobacteria Syntrophobacterales			1.8比	0.1±0*	0.1±0*	0.5±0	1.8 1 0	0.5±0*
Proteobacteria	Deltaproteobacteria	Proteobacteria Deltaproteobacteria Syntrophobacterales	Syntrophaceae		1.8 1 0	0.1±0*	0.1±0*	0.5±0	1.8±0	0.5±0*
Proteobacteria	Deltaproteobacteria	Proteobacteria Deltaproteobacteria Syntrophobacterales	Syntrophaceae	Syntrophus	1.150	0.1±0*	0.1±0	0 + 0	<u>년</u>	*0∓0
Spirochaetes					0.4±0	1.1±0*	1.1±0	1.5±1	0.4±0	1.5±1*
Spirochaetes	Spirochaetes				0.4±0	1.1±0*	1.1±0	1.5±1	0.4±0	1.5±1*
Spirochaetes	Spirochaetes	Spirochaetales			0.4±0	1.1±0*	1.1±0	1.5±1	0.4±0	1.5±1*
Spirochaetes	Spirochaetes	Spirochaetales	Spirochaetaceae		0.4±0	1.1±0*	1.1±0	1.5±1	0.4±0	1.5±1*
Spirochaetes	Spirochaetes	Spirochaetales	Spirochaetaceae	Treponema	0.4±0	1.1±0*	1.1±0	1.5±1	0.4±0	1.5±1*
Tenericutes					0.1±0	*0∓6.0	0.9±0	1.1±0	0.1±0	1.1±0*
Tenericutes	Mollicutes				0.1±0	*0 = 6.0	0.9±0	1.1±0	0.1±0	1.1±0*
Tenericutes	Mollicutes	Acholeplasmatales			0.1±0	*0∓8.0	0.8±0	1.1	0.1±0	1.1±0*
Tenericutes	Mollicutes	Acholeplasmatales	Acholeplasmataceae	100 00000	0.150	.0∓8.0	0.8±0	1.1±0	0.1±0	1.1±0*
Tenericutes	Mollicutes	Acholeplasmatales	Acholeplasmataceae	Acholeplasma	0.150	0.8±0*	0.8±0	1.1±0	0. 년	1.1±0*

Tab. B26: Annotation der durch 454-Pyrosequenzierung aus den Gärresten von 8 mesophilen Biogasanlagen (BGA) gewonnenen Sequenzen auf dem Phylum-Level (Angaben in %, n=3). Aufgeführt sind nur die Phyla, deren Anteil in wenigstens einer Probe mindestens 0,1% betrug.

Phylum	BGA 1	BGA 2	BGA 3	BGA 4	BGA 5	BGA 6	BGA 7	BGA 8
unassigned	8.8	10.8	10.9	24.9	18.9	10.4	8.8	33.3
Acidobacteria	0.2	0.1	0.2	0.1	0.1	0	0.1	0.1
Actinobacteria	0.1	0.1	0.3	0.1	0.1	0.3	0.7	0.3
Bacteroidetes	26	11.8	21.1	7.5	16.4	9.7	12.7	6.9
Chloroflexi	0.1	0.1	0	0	0	0	0	0
Fibrobacteres	0.4	0	0.1	0	0.2	0	0.1	0
Firmicutes	60.5	74.6	61.6	65.5	59.9	75.3	73.6	54.7
Fusobacteria	0	0	0	0	0.1	0	0	0
Proteobacteria	1.3	1.5	2.7	0.1	2.2	2.8	2.4	3
Spirochaetes	1.6	0.4	1.5	0.7	0.7	0.4	0.6	0.5
Synergistetes	0.2	0.3	0.4	0.7	0.1	0.2	0.4	0.8
Tenericutes	0.8	0.2	1.1	0.3	1.2	1	0.5	0.3
Verrucomicrobia	0	0	0.1	0	0	0	0	0

Tab. B 27: Verwendete Primer-Systeme zum Nachweis von Plasmid-spezifischen und Integron-spezifischen Sequenzen.

			1996	1996	1996	1996 1996 1986	1996 1996 1986 1986	1996 1996 1986 1986 et al.,
			Götz et al., 1996	Götz et al., 1996	Götz et al., 1996 Götz et al., 1996 Heuer et al., 2009	Götz et al., 1996 Götz et al., 1996 Heuer et al., 2009 Kraft et al., 1986	Götz et al., 1996 Götz et al., 1996 Heuer et al., 200 Kraft et al., 1986 Goldstein et al., 2001	Götz et al., 1996 Götz et al., 1996 Götz et al., 1996 Kraft et al., 1986 Kraft et al., 1986 Z001 Sandvang et al.,
			436	436	436	436 1140 912	436 1140 912 280 233	436 1140 912 280 233
on fine fine fine fine from the control of the cont	gtcagctcgcggtacttctccca ttcaccttctacgaactgtgtaat gtcaaggcccgatacttctcca	gtcagctcgcggtacttctccca ttcaccttctacgaactgtgtaat gtcaaggcccgatacttctccca ttcacgttctacgagctttgcacagac gacagctcgcggtactttccca ttcactttctacgaaatctgcaaagac	gtcagctcgcggtacttctccca ttcaccttctacgaactgtgtaat gtcaaggcccgatacttctccca ttcacgttctacgagctttgcacagac gacagctcgcggtactttccca ttcacttctacgaaatctgcaaagac gatagcttccgatacttttccca ctcccgtactaactgtcacg	gtcagctcgcggtacttctccca ttcaccttctacgaactgtgtaat gtcaaggcccgatacttctccca ttcacgttctacgagctttgcacagac gacagctcgcggtactttccca ttcacttctacgaaatctgcaaagac gatagcttccgatactttccca ctcccgtactaactgtcacg atcgaccgagacaggccctgc gacccggaaaaccaaaaata ctcagtactactactactccca	gtcagctcgcggtacttctccca ttcaccttctacgaactgtgtaat gtcaaggcccgatacttctccca ttcacgttctacgaactgtgtaat gacagctcgcggtactttccca ttcacgttctacgagattttccca gatagcttcgatacttttccca ctcccgtactaactgtcacg atcgaccgagacaggccctgc gacccggaaaaccaaaata gtgagggtgagggtgctatc aattgaccgatttagttgtgacctgc tgatttgytttggagatac tgatttgytttggagatac	gtcagctcgcggtacttctccca ttcaccttctacgaactgtgtaat gtcaaggcccgatacttctccca ttcacgtctacgagctttgcacagac gacagctcgcggtactttccca ttcacttctacgaaatctgcaaagac gatagcttccgatactttccca ctcccgtactaactgtcacg atcgaccgagacaggccctgc gacccggaaaaccaaaata gtgagggtgaggtgtgtatc aattgaccgatttagttgtgacctgc tgatttgytttggagatac cctcccgcacgatact cctcccgcacgatacttc	gtcagctcgcggtacttctccca ttcaccttctacgaactgtgtaat gtcaaggccggtacttctccca ttcacgttctacgaactgtgtaat gacagctcgcggtactttccca ttcacgttctacgaagttttccca gacagctcgcggtacttttccca ctcccgtactaactgtcacg atcgaccgaaaaccaaaata gtgagggtgaggggtgctatc aattgaccgatttagttgtgacctgc tgatttgytttggagatac cctccgcacgattagttgtgacctgc ttatttgctgggattaggc ttattgctgggattaggc acggcatcggttaggc	gtcagctcgcggtacttctccca ttcaccttctacgaactgtgtaat gtcaaggccggtacttctccca ttcacgttctacgaactgtgtaat gtcaaggccggtactttccca ttcacgttctacgaagtcttgcacagac gacagctcgcggtacttttcca ttcactttctacgaaatctgcaaagac gatagcttccgatacttttcca ctcccgtactaactgtcacg atcgaccgagacaggccctgc gaccggaaaaccaaaata gtgagggtgagggtgctatc aattgaccgattagttggacctgc tgatttgytttggagatac cctccgcacgattagttgtagcc ttcacgcatcgtcaggc ttattgctgggattaggc acggctaccctctgttatc ggcatccaagcagcaagc
	trfA g-R trfAg-208f (γ-like) trfAg-208r trfA d-F (δ)	3) Q = = =	: 플로G G [2 2	: 꽃눈은 근 ≥≥ 같은	: 꽃™면 면 동등 등일때때	: 漢불인 은 [동동]등 등[[편집]	: 꽃 꼭 ® 으 > > < 5 다 ~	: 꽃 늘 6 : 6 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 :
<u>+</u>	<u> </u>	<u> </u>						<i>iv</i>) (<i>iv</i>) (rep)

Tab. B 28: Verwendete Primer-Systeme zum Nachweis von ARGs und Resistenzgenen gegen quaternäre Ammoniumverbindungen.

			The state of the s	
Zielgen	Primer	Sequenz [5′- 3′]	Produktgröße	Referenz
		SCOVE On TANKE	[dq]	
sul1	Sul 1-F	cggcgtggctacctgaacg	433	Kerrn et al., 2002
	Sul 1-B	gccgatcgcgtgaagttccg		
sul2	Sul 2-F	gcgctcaaggcagatggcatt	293	Kerrn et al., 2002
	Sul 2-B	gcgtttgataccggcacccgt		
Sul3	Sul 3-F	cagataaggcaattgagcatgctctgcag	569	Wu et al., 2010
	Sul 3-R	aatgatttccgtgacactgcaatcatt		
tetA	TetA-L	ggcggtcttcttcatcatgc	502	Lanz et al., 2003
	TetA-R	cggcaggcagagcaagtaga		
tetM	TetM-Ng-FW	gtggacaaaggtacaacgag	406	Ng. et al., 2001
	TetM-Ng-RV	cggtaaagttcgtcacacac		
tet X	tetX-1	tagccttaccaatgggtgt	242	Bartha et al., 2011
	tetX-2	caaatctgctgtttcactcg		
qacE	qacE(F1)	gccctacacaaattgggaga	359	Kazama 1998,
	qacERmod	ttagtgggcacttgctttggaaag		Chuanchen et al.,
				2007
qacE∆1	qacE∆1F	atcgcaatagttggcgaag	226	Sandvang et al.,
	qacE∆1B	caagcttttgcccatgaagc		1997

Tab. B 29: Verwendete quantitative real-time PCR Systeme zur Quantifizierung von MGEs, Integrons, ARGs und $qacE\Delta 1$ in TC-DNA aus Schweinegüllen und Proben aus BGAs. Alle aufgeführten Sonden wiesen folgende Modifizierungen auf: 5` = 5/6-FAM, 3` = 5/6 TAMRA.

Zielgen	Primer	Sequenz [5´- 3´]	Referenz
16S rDNA	1492R	ggwtaccttgttacgactt	Suzuki et al.,
	1369F	cggtgaatacgttcycgg	2000
	TM1389F (Sonde)	cttgtacacaccgcccgtc	
IncP-1	korB-F	tcatcgacaacgactacaacg	Jechalke et al.,
(korB)	korB-Fz	tcgtggataacgactacaacg	2013
	korB-R	ttettettgecettegecag	
	korB-Rge korB-	ttyttcytgcccttggccag	
	Rd	ttettgacteeettegeeag	
	tp_korBgz (Sonde)	tsaggtcgttgcgttgcaggttytcaat	
	tp_korB (Sonde)	tcagytcrttgcgytgcaggttctcgat	
IncP-1ε	qTrafA & 941f	acgaagaaatggttgtcctgttc	Heuer et al.,
(trfA)	qTrafA & 1014r	acgaagaaatggttgtcctgttc	2012
	tpTRFAE 965 (Sonde)	ccggcgaccattacagcaagttcattt	
LowGC	v216q667f	gcttggcggtcagcaatt	Heuer et al.,
(traN)	v216q741r	ttaggaataacaatcgctacacctttac	2009
	v216tp689 (Sonde)	cttctggctgctccgacacgaagc	
intl1	Intl1-LC1	gccttgatgttacccgagag	Barraud et al.,
	intI1-LC5	gatcggtcgaatgcgtgt	2010
	Intl1-probe (Sonde)	attcctggccgtggttctgggtttt	
intl2	Intl2-LC2	tgcttttcccacccttacc	Barraud et al.,
	Intl2-LC3	gacggctaccctctgttatctc	2010
	intl2-probe (Sonde)	tggatactcgcaaccaagttatttttacgctg	
qacE/	qacEall-F qPCR	cgcattttattttcttctctggtt	Jechalke et al.
qacE∆1	qacEall-R qPCR	cccgaccagactgcataagc	,2014
	qacEall (Sonde)	tgaaatccatccctgtcggtgt	
sul1	qSUL_1-653f	ccgttggccttcctgtaaag	Heuer & Smalla,
	qSUL_1-719r	ttgccgatcgcgtgaagt	2007
	tpSUL1 (Sonde)	cagcgagccttgcggcgg	

Tab. B 29: Fortsetzung.

Zielgen	Primer	Sequenz [5´- 3´]	Referenz
sul2	qSUL2_595f	cggctgcgcttcgatt	Heuer et al.,
	qSUL2_654r	cgcgcgcagaaaggatt	2008
	tpSUL2_614 (Sonde)	cggtgcttctgtctgtttcgcgc	
tetM	tetM_qfw	ggtttctcttggatacttaaatcaatcr	Smith et al.,
	tetM_qrv	ccaaccatayaatccttgttcrc	2004
	tetM_tp (Sonde)	atgcagttatggargggatacgctatggy	
tetQ	q-tetQ-fw	aggtgctgaaccttgtttgattc	Smith et al.,
	q-tetQ-rv	ggccggacggaggattt	2004
	q-tetQ-probe (Sonde)	tcgcatcagcatcccgctc	
tetW	q-tetW-fw	gcagagcgtggttcagtct	Peak et al.,
	q-tetW-rv	gacaccgtctgcttgatgataat	2007
	q-tetW-probe (Sonde)	ttcgggataagctctccgccga	